
Contents

1 Modular Cartesian Genetic Programming . 1
1 Embedded Cartesian Genetic Programming (ECGP) 1

1.1 Cone-based and Age-based Module Creation 1
1.2 Cone-based Crossover . 6

References . 8

Index . 11

v

Chapter 1
Modular Cartesian Genetic Programming

1 Embedded Cartesian Genetic Programming (ECGP)

1.1 Cone-based and Age-based Module Creation

The choice of an appropriate representation model is key to success of evolution-
ary algorithms (EA). Cartesian genetic programming encodes the genotype by a
two-dimensional arrangement of functional nodes and interconnects. Similar to the
behavior of popular EA branches as GAs and GP, scalability became a major topic
for CGP when solutions pass a certain size. Tackling it has generated a family of ap-
proaches comprising application-tailored operators, adaptive schemes, and hybrid
methods. An intriguing approach introduced by Koza 1994 [3] operates directly
on genotype’s encoding allowing to extract and append parts of it to genotype’s
alphabet. The automatic definition and reuse of sub-functions (ADF) introduces a
divide-and-conquer-like concept to the heuristic search. It allows the search process
to increase alphabet’s functional level and therefore to operate on a more complex
and typically more expressive level. Often, this shortens the search process signifi-
cantly.

In this section, we present two novel approaches for module creation, an age-
based and a cone-based technique. Further, we detail a cone-based crossover opera-
tor for use with cartesian genetic programming. We evaluate the different techniques
and compare them with related work. The results show that age-based module cre-
ation is highly effective, while cone-based approaches are only beneficial for regu-
larly structured, multiple output functions such as multipliers.

In [3], Koza described the automatic definition and reuse of functions that are
frequently appearing patterns in a chromosome. Turning these patterns into regular
building blocks (modules) for evolution automatically decomposes the problem and
allows for hierarchical problem solving. Since Koza relied on trees to represent the
chromosome, his implementation of module creation focused on subtrees which are
convex structures corresponding to subfunctions. In contrast, the CGP and ECGP
representation models essentially describe a directed acyclic graph (DAG). A sub-

1

2

graph of a DAG is, however, not necessarily convex. The original ECGP model se-
lects a node randomly and then adds nodes with contiguous node numbers to form a
module. Such modules do not represent typical hardware building blocks; the nodes
within these modules might even be completely unconnected. In this section we dis-
cuss two alternative techniques, cone-based and age-based module creation. While
cone-based module creation focuses on convex subgraphs that actually represent
typical hardware building blocks, age-based module creation extends the original
random selection of nodes with the concept of aging.

1.1.1 Cone-based Module Creation

10

11

12

13

14

15
10 11 12 13 14 15 16

16

(a) (b)

Fig. 1: Original ECGP module creation (a) can lead to subfunctions which are atyp-
ical in digital design (b)

Figure 1 presents the standard ECGP module creation technique that aggregates
nodes with contiguous node numbers to modules. Cone-based module creation se-
lects nodes that form cones and thus might better correspond to subfunctions, es-
pecially in the area of digital circuits. Cones are a widely-used concept in circuit
synthesis, especially in lookup-table mapping for FPGAs (see, for example, [4]).
Given a node fr in the DAG, a cone rooted at fr consists of fr itself plus some pre-
decessor nodes such that for any node fi in the cone there exists a path from fi to fr
that is entirely in the cone. Thus, a cone is a convex graph. For example, in Figure
2(a) the node set (f11, f9, f8) forms a cone. Note that while a cone has a distinct root
node fr, it can have several outputs. The rationale behind cone-based module cre-
ation is that many useful substructures in classically engineered circuits are cones,
e.g., the sum and carry functions of a full adder.

To generate module candidates, we randomly select a primitive node fi and create
a cone rooted at fi with a number of nodes randomly chosen between nmin and nmax.
One subtlety in generating cones is that we have to avoid what is called reconvergent
paths in logic synthesis. To discuss several subtypes of cones consider again the
circuit in Figure 2(a). The node set (f11, f9, f6) is called a fan-out free cone because
the fanout (output connections) of every node except the root node stay within the
cone. Such cones are certainly safe candidates for module creation. The node set
(f11, f9, f8, f5) does not form a fan-out free cone, as the outputs of f5 and f8 leave

3

invalid module

f7

f8

f9 f11

po12

po13

pi0

pi1

pi2

pi3

pi4

f6

f7

f9 f11

po12

po13

pi0

pi1

pi2

pi3

pi4

m10

(a) (b)

f5

f6

f10

Fig. 2: Cones with reconvergent paths are invalid (a) as they can lead to combina-
tional feedback loops (b)

the cone. Nevertheless, this node set forms a valid module. In contrast, the node
set (f10, f8, f5) which is highlighted in Figure 2(a) does not form a valid module as
the output of f5 leaves and reenters the cone. If this cone was turned into a module
the resulting circuit, shown in Figure 2(b), would contain a combinational feedback
loop. The path formed by nodes (f5, f7, f10) is called reconvergent with respect to
the cone (f10, f8, f5).

Reconvergent paths are specific to the cone-based module creation technique.
Neither the age-based technique (see Section 1.1.2) nor the original ECGP method
can create such paths. Compared to original ECGP module creation, which relies
on contiguous node numbers, we use breadth first search starting with the cone’s
root node to avoid reconvergent paths. Resuming the example of Figure 2(a), a cone
of size 3, rooted at node f10 would be formed by the nodes (f10, f7, f8). Module
creation stops when the randomly chosen number of nodes has been aggregated
or when a module is hit. There are no modules within modules. As the original
ECGP technique, our cone-based module creation technique ensures that inputs to
a new module only come from nodes with smaller node numbers, and outputs of
the new module only connect to nodes with higher node numbers. After selecting
nodes for a new module the nodes are compacted and renumbered to form a coherent
block which then can be compressed to a module by the standard ECGP compress
operator.

1.1.2 Age-based Module Creation

Age-based module creation aggregates primitives nodes that have persisted in the
chromosome for a higher number of generations. The rationale behind age-based
module creation is that aged nodes are likely to contribute directly or indirectly to
an individual’s success and should therefore be preferred over randomly selected
nodes.

We assign to each primitive node fi an attribute age(fi). The age is incremented
by one in each generation and set to zero when the node is selected for mutation
or compression. The age of primitive nodes within modules remains unchanged;

4

modules themselves do not have an age. We form module candidates by aggregating
primitive nodes, restricting the number of nodes by lower (nmin) and upper bounds
(nmax). The average age of a module candidate m j is then given by

age(m j) =
∑ fi∈m j age(fi)

|m j|

Our age-based module creation technique relies on a two-stage binary tournament
to select a module. That is, we generate a module candidate by following procedure:
First, we select a random primitive node fi and a number of primitive nodes n,nmin≤
n≤ nmax, randomly. Then, we extend the module from fi to nodes with smaller node
numbers until we hit a module or aggregate exactly n primitive nodes. We create
another module using a different random primitive node fi and draw the one with
higher average age. If both modules have the same average age, we draw one module
randomly. This step is repeated once to derive the final module.

We have also experimented with selecting the module candidate with maximum
average age. This requires the formation and evaluation of a larger number of mod-
ule candidates. However, picking the module with maximum average age has proven
inferior to the two-stage binary tournament scheme for all test problems. An expla-
nation for this lies in the fact that maximizing average module age tends to generate
modules with a very small number of high-aged nodes. It seems that while using
node age as a guide to steer module creation is highly effective (see Section 1.1.3),
the technique is rather sensitive to the size of modules.

1.1.3 Benchmarks, Metrics and Results

benchmarks
parity multiplier EMG classifier

chromosome length 50 nodes 200 nodes 200 nodes
number of inputs ni 3/4/5 4/6 200
number of outputs no 1 4/6 1
functional set 2-LUT: and 4-LUT: and 4-LUT

nand, or, nor andinv, or, xor any function
mutation rate 0.03 0.03 0.03
one-point mutation probability 0.6 0.6 0.6
compress/expand probability 0.1/0.2 0.1/0.2 0.1/0.2
module mutation probability 0.1 0.1 0.1
module size (nmin,nmax) 2. . . 8 nodes 2. . . 10 nodes 2. . . 10 nodes

Table 1: ECGP parameters for the parity, multiplier and classifier benchmarks

We compare the original, age-based and cone-based ECGP module creation tech-
niques on even-parity and multiplier benchmarks. Additionally, we include classi-
fiers for electromyographic (EMG) signals as test problems. In this classification

5

application, skin-attached sensors collect electric signals of contracting muscles to
control a prosthetic hand [5]. The test data has been recorded from four muscles of
a volunteer’s forearm. A sequence of eight contractions (movements) with 20 rep-
etitions each has been measured. The typical signal for a movement is composed
of a 9 seconds relax phase and a 5 seconds contraction phase. For two seconds of
the contraction phase we have removed the dc offset and applied RMS smoothing
to achieve the feature vectors. The resulting data set consists of 144 strings of 200
bits each. Based on that data we try to evolve a classifier circuit for the movement
”open hand”.

Table 1 shows the ECGP model parameters, including the chromosome length,
the number of inputs and outputs, and the function set for the nodes. For the parity
function, we use 2-input lookup tables (LUT) to model the nodes, but restrict the
function set to a few Boolean functions. For the multipliers, we use 4-input LUTs as
node models but again restrict the function set to the functions and, or, xor, as well as
andinv, which is an and with one input inverted. Finally, for the EMG classifiers we
use 4-LUTs without any restriction on the node function. As an optimization algo-
rithm we employ a 1+4 evolutionary strategy (ES). The corresponding parameters
as well as the parameters for module creation are also shown in Table 1. We con-
duct all experiments with our modular framework for evolutionary hardware design
presented in [6].

As evaluation metrics we choose the computational effort (CE) as presented by
Koza in [3]. The CE metrics states the expected value for the number of fitness
evaluations required to reach the optimization goal with a probability of z. To de-
termine the CE metrics, we repeat all experiments for 50 times and set z to 99%.
The CE metrics cannot be applied directly to the classifier benchmark. Classifiers
differ from arithmetic circuits in that there is no simple correctness measure. Typi-
cally, classifiers are evolved with training data and then run on test data to determine
metrics such as classification rate. As we want to investigate and compare the com-
putational effort for evolving a classifier and not the generalization capabilities of
the ECGP model, we measure the classifiers’ fitness on the training data set and
define it to be correct when the classification rate on training data exceeds 85% and
95%, respectively.

Table 2 presents the comparison of the different module creation techniques.
The table reports the computational effort in absolute numbers and relative to the
original random module creation technique. A negative relative effort denotes an
improvement. From the experimental results, we can make the following observa-
tions: i) Age-based module creation is highly effective. For six out of the seven test
problems, age-based module creation lowers the computational effort in compar-
ison to the previous method with improvements ranging between some 20% and
40%. The one exception is the 4-parity function, where the computational effort
increases slightly by 3.4%. ii) The overall results for the cone-based module cre-
ation technique are somewhat inconclusive. However, looking at the different test
problems we note that for the evolution of multipliers and for larger parity func-
tions cone-based module creation proves highly beneficial. In contrast, for evolving
EMG classifiers the cone-based approach does not work at all. Intuitively, the iden-

6

computational effort (CE)
random age-based cone-based
absolute absolute relative absolute relative

2x2 mul 66,623 51,961 −22.0% 49,052 −26.4%
3x3 mul 8,840,574 6,001,917 −32.1% 3,638,120 −58.9%
3-parity 81,122 49,160 −39.4% 87,915 +8.4%
4-parity 477,880 494,295 +3.4% 265,796 −44.4%
5-parity 1,825,645 1,385,244 −24.1% 1,112,691 −39.1%
85% EMG classifier 18,260 14,743 −19,3% 23,855 +30.7%
95% EMG classifier 510,147 314,311 −38,4% 873,319 +71.2%

Table 2: Experimental results for an 1+ 4 ES with random, age-based and cone-
based module creation

tification of cones as useful subcircuits is hampered if the function is rather small
or is a single-output function. In the first case there is no sufficient potential for
creating cones, whereas the second case lacks re-usability of a cone for different
outputs. Multipliers are highly regularly structured functions that are neither partic-
ularly small nor single-output functions. From the experimental data it is clear that
cone-based module creation is effective for multipliers, especially more effective
than age-based module creation. In contrast, EMG classifier circuits are random
logic functions which might explain the unsatisfying performance of cone-based
module creation for this class of problems.

1.2 Cone-based Crossover

Based on the cone-based module creation technique, we investigate the efficiency
of a cone-bases crossover operator for the ECGP hardware representation model.
The crossover operator selects a convex sub-DAG in one parent and replaces it
with a convex sub-DAG extracted from another parent. Crossover implies the use
of a genetic algorithm (GA) instead of the evolutionary strategy typically applied
in ECGP. GAs are of interest for two reasons. First, a GA exchanges partial solu-
tions within the population which can help escape local optima. Specifically, a GA
scheme with an increased population might reveal a more stable convergence behav-
ior compared to an ES. Second, one might be interested in evolving circuits that are
not only functionally correct but also fast and small. Multi-objective evolutionary
algorithms (MOEAs) are an intriguing approach for such optimization problems.
Modern Pareto-based MOEAs evolve a set of diverse individuals in a single run and
rely on an operator that exchanges partial solutions of individuals.

Our cone-based crossover operator works as follows: In the first step, we form
a cone in a donor chromosome by randomly selecting a root node and a size be-
tween nmin and nmax. This procedure is similar to the cone-based module creation
of Section 1.1.1 except that we treat both primitive nodes and modules as atomic

7

donor chromosome

recipient chromosome

recombined chromosome
f10

f11

f22

p = {f10, f11, f22}

q = {f5, f7, f8}f5

f7

f8

f5

f7

f8

f30

f32

f10 f22

f11

f30

f32

Fig. 3: Cone-based crossover: A cone of a donor chromosome is transplanted into a
clone of a recipient chromosome.

nodes. Note that at this point, a cone can contain modules. In the second step, we
randomly select a root node in a recipient chromosome and try to form a cone of
exactly the same size as the donor’s cone. Depending on the actual DAGs, the re-
sulting cone of the recipient can be smaller than the donor’s cone. The third step
comprises the formation of two sets, set p that contains nodes of the donor’s cone
which have output connections to nodes outside the cone, and another set q that
contains the nodes of the recipient which connect to nodes within the recipient’s
cone. Figure 3 displays an example. The donor’s cone consists of three nodes. As
all these nodes provide cone outputs, we derive p = { f10, f11, f22}. The recipient’s
cone receives inputs from three nodes, and we derive q = { f5, f7, f8}. The fourth
step actually transplants the donor’s cone into a clone of the recipient, forming a
new recombined chromosome. This process preserves all node types. Specifically,
nodes in the donor’s cone which are modules of type I or II (see Section ??) remain
modules of type I or II, respectively. The module descriptions of the recombined
chromosome are updated accordingly. In the final step, dangling inputs of the trans-
planted module and the recipient chromosome are randomly connected to the nodes
in lists p and q, respectively. If the resulting chromosome still contains unconnected
inputs, they are connected randomly to preceding nodes.

For experimentally evaluating the cone-based crossover scheme we use the same
setup as in Section 1.1.3 and compare the 1+4 ES scheme with a standard, elitism-

8

computational effort
1+4 ES GA, |population|=5 GA, |population|=50
absolute absolute relative absolute relative

2x2 mul 66,623 64,111 −3.8% 102,593 +54.0%
3x3 mul 8,840,574 2,518,964 −71.5% 39,064,742 +341.9%
3-parity 81,122 382,036 +470.9% 186,898 +130.4%
4-parity 477,880 6,294,678 +1217.2% 6,482,504 +1256.5%
85% EMG classifier 18,260 19,859 +8,8% 28,825 +57,9%
95% EMG classifier 510,147 576,988 +13.1% 695,794 +36.4%

Table 3: Experimental results: 1+4 ES versus GA with different population sizes

based GA configured with a small (GA-5) and a large population (GA-50). The
elitism rate for the GA is 5.0%, with at minimum one selected individual. In GA-
5, the best individual proceeds directly to the next generation. In GA-50, the three
best individuals proceed directly to the next generation which leaves us with 47
remaining fitness evaluations. The cone-based crossover operator considers cones
with a size of up to 20 nodes (primitive nodes and modules) and is applied with a
probability of 1.0%.

Table 3 presents the experimental results. The table reports the computational
effort in absolute numbers and relative to the original ECGP method. A negative
relative effort denotes an improvement. From the experimental results, we can make
the following observations: i) Comparing the 1+4 ES to a GA with population size
of 5, we conclude that the GA is better for multipliers and dramatically worse for
the parity function and for the EMG classifiers. This points to the effectiveness of
the cone-based approach for multipliers and to its inefficiency for single-output and
random logic circuits. ii) Increasing the population size for the GA to 50 increases
the computational effort in any case substantially. It has to be noted that a GA with a
population size of 50 also evolves correct circuits but needs far more fitness evalua-
tions. In each generation, GA-50 performs 11.75× (47/4) more fitness evaluations
than ES and GA-5. As the results show, even for multipliers this larger potential for
recombination does not outweigh the higher effort per generation.

References

1. J. A. Walker and J. F. Miller, “Evolution and Acquisition of Modules in Cartesian Genetic
Programming,” in Proceedings 7th European Conference on Genetic Programming (EuroGP),
vol. 3003 of LNCS, pp. 187–197, Springer, April 2004.

2. P. Kaufmann and M. Platzner, “Advanced Techniques for the Creation and Propagation of Mod-
ules in Cartesian Genetic Programming,” in Proceedings 10th Conference on Genetic and Evo-
lutionary Eomputation (GECCO’08), pp. 1219 – 1226, ACM Press, 2008.

3. J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press,
1994.

4. J. Cong and Y. Ding, “Combinational Logic Synthesis for LUT Based Field Programmable
Gate Arrays,” ACM Transactions in Design Automation of Electronic Systems, vol. 1, no. 2,

9

pp. 145–204, 1996.
5. K. Glette, T. Gruber, P. Kaufmann, J. Torresen, B. Sick, and M. Platzner, “Comparing Evolvable

Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control,” in Pro-
ceedings 3nd NASA/ESA Conference on Adaptive Hardware and Systems (AHS’08), pp. 32–39,
IEEE Computer Society, 2008.

6. P. Kaufmann and M. Platzner, “MOVES: A Modular Framework for Hardware Evolution,” in
Adaptive Hardware and Systems (AHS’07), pp. 447–454, IEEE Press, 2007.

Index

ADF, see Automatic Definition and Reuse of
Subfunctions

aging, 3
Automatic Definition and Reuse of

Subfunctions, 1

cone, 3
convex graph, 3
crossover, 6

cone-based, 6

Electromyography, 4, 5

module creation, 1
age based, 1
cone based, 1

multiplier, 5

parity, 5

reconvergent path, 3

11

