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1 Classification Hardware Evolution using Modular Approach

Many classification tasks, especially in embedded and real-time settings, require
not only sufficient classification accuracy but also high performance, high energy-
efficiency, and low resource usage. These objectives can be reached by a direct hard-
ware implementation. Evolvable hardware (EHW) approaches create direct hard-
ware implementations and have been applied successfully to classification tasks,
such as the recognition of characters [12], road signs [25], faces [9], electromyo-
graphic signals [13, 6, 4], and the diagnosis of the Parkinson disease [21].

We present an EHW approach based on the EGCP hardware representation
model to design classifiers for electromyographic (EMG) signals. EMG signal clas-
sification is a prerequisite for the control of prosthetic hands [4, 8]. We discuss
our classifier architecture, the EMG signal domain, the hardware representation
model, the evolutionary optimization technique and, finally, experimental results.
The results are promising and show that EHW-based EMG signal classifiers reach a
classification accuracy close to that of state-of-the-art classification techniques. Fur-
thermore, the EWH approach lends itself to online adaptability and fault recovery,
making the technology a promising candidate for future self-adaptive classifiers.

1.1 Classifier Architecture
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Fig. 1: EHW classifier architecture. Each category detecting module (CDM) con-
tains a set of category classifiers (CC) that implement evolved pattern matching
rules. The CDM with the highest number of satisfied rules defines the global deci-
sion.
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The hardware architecture is probably the most important design issue for an
EHW classifier. Figure 1 shows the structure of our classifier architecture. The basic
element is the category classifier (CC) implementing an evolved pattern matching
rule. A category detection module (CDM) groups several category classifiers and
counts the number of satisfied rules. A global maximum detector determines the
category with the most hits as classification result. In case of a draw the category
with the lowest numerical index is selected.

Rather than directly evolving a huge ECGP model, all successful EHW classifiers
impose a top-level structure as the one shown in Figure 1. An earlier approach uses
a programmable logic array (PLA)-like structure of AND gates followed by OR
gates [12]. The Increased Complexity Evolution (ICE) architecture [24] features a
modular top-level structure that splits into several category detection subsystems. A
similarly modular approach is the Functional Unit Row (FUR) architecture [7].

Our classifier architecture can be seen as a generalized version of previous mod-
ular architectures. All the modular architectures aim at three goals: First, the modu-
larization of the classifier into CDMs and CCs reduces the complexity of the evolved
circuits which in turn leads to a faster convergence of the optimization process. Sec-
ond, the architecture scales with the number of categories by adding more CDMs.
Third, classification accuracies can be increased by using multiple CCs and taking
a majority vote decision at the end.

1.2 EMG Signal Domain

For EMG data acquisition, we use a measurement system comprising four compo-
nents: EMG electrodes (Tyco Arbo*, Ag/AgCl, 35 mm), amplifiers (Biovison [3]),
A/D converters (N.I. [17]), and a standard computer. Our system continuously mon-
itors four sensor channels with 14 bit resolution at a sampling rate of 6 kHz. Two
important requirements for such a measurement system are the reduction of noise in
the analog signal domain and a reproducible biomechanical experiment setup.

To reduce noise, we employ an optical bridge (Sonowin [22]) to galvanically
decouple the signal amplifiers and the A/D converters from the computer that accu-
mulates the data. A separate battery provides a stable power supply to the amplifiers
and A/D converters. Moreover, the amplifiers are placed as near as 10 cm to the
skin-attached electrodes in order to minimize parasitic inductance of a significant
level.

We place the four electrode pairs on the top, bottom, medial, and lateral sides of
the forearm as shown in Figure 2, with the reference at the wrist. The exact electrode
positions are determined specifically for each test subject to obtain pronounced sig-
nals. After this initial calibration, the electrode positions are marked to be able to
re-establish the experimental setup on different days.

In a single experiment run, the test subject has to perform 20 iterations of a se-
quence of eight different movements. These movements are open, close, flexion,
extension, ulnar deviation, radial deviation, pronation, and supination, and are de-
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Fig. 2: Sensor placement (muscle anatomy taken from [10]).
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Fig. 3: Movements: a) open, b) close, c) flexion, d) extension, e) ulnar deviation, f)
radial deviation, g) pronation and h) supination.
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Fig. 4: EMG signal preprocessing. The left figure shows the raw signals for all four
channels, consisting of a nine seconds relaxation phase, a three seconds transient
phase with intensified activity, and an eight seconds steady state contraction phase.
The center figure presents the DC offset-compensated first 1.9 seconds of the steady
state phase, and the right figure the RMS smoothed signals from which the features
are extracted.

picted in Figure 3. A single movement consists of two phases: a nine seconds re-
laxation and an 11 seconds contraction part. The EMG signal for the contraction
part divides into a three seconds phase at the onset of the contraction containing the
transient components of the EMG signal, and an eight seconds steady state phase
which corresponds to a constant force contraction. A part of this steady state phase
is used for classification. Figure 4 presents an example for a complete EMG signal.

Signal preprocessing and feature extraction is done completely in the digital do-
main. Following the approach presented by Kajitani et al. in [13], we extract the
features in four steps:
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1. For every channel k,k = 1, . . . ,4, and movement p, p = 1, . . . ,8, we calculate the
sensor DC offset okp as the mean value of all signal samples between the third
and the fifth second of the signal relaxation phase.

2. The steady state signal dikp is DC offset-compensated and smoothed by a root
mean square (RMS) method with a window size of ws = 600. The first 1.9 sec-
onds (11′400 samples at 6 kHz) of the rectified and smoothed signal d′jkp are
calculated by

d′jkp =

[
1

ws

j+ws−1

∑
i= j

(dikp−okp)
2
] 1

2
,

with j = 1 . . .11′400.
3. We then apply a logarithm-transformed moving average to the rectified and

smoothed signal, using a window size of w f = 6′000 samples and a shift amount
of s f = 600 samples. The non-normalized feature thus consists of 10 values and
is defined as

flmkp =− log
(

1
w f

lm+w f−1

∑
j=lm

d′jkp

)
,

with lm = 1+(m−1) · s f , and m = 1, . . . ,10.
4. Finally, we normalize the features for each channel separately:

glkp =
flkp−minl,p( flkp)

maxl,p( flkp)−minl,p( flkp)

Taking all k = 4 channels into account, the feature vector for a single movement
consists of 10× 4 values. These 40 values are previously linearly quantized by
a 1-out-of-16 encoder and fed into the classifiers. This configures the number of
inputs (ni) for the CDM’s category classifiers to 640 bits.

1.3 Classifier Hardware Representation Model

We encode the category classifiers of the CDMs by ECGP chromosomes. With six
category classifiers per CDM and eight categories, the complete classifier architec-
ture is configured by a multi-chromosome genotype with 48 ECGP chromosomes.
Each chromosome comprises one row (nr = 1) of 50 to 250 (nc = 50 . . .250) func-
tional units without restriction on the length of the feed-forward wires (l = nc). The
functional units are either look-up-tables (LUTs) with four inputs and one output
(ni = 4,no = 1) or modules with up to ten LUTs. We do not restrict the function
set for the LUTs. We apply the techniques for automatic module creation and reuse
(ADF) described in Chapter ??. However, finding category-specific patterns in in-
put vectors modulated by a large quantum of randomness results in circuits with
less structure compared to evolved circuits for arithmetic benchmarks. Based on
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this observation, we solely focus on age-based module creation [15]. Table 1 lists
the parameters chosen for the ECGP model as described in Chapters ?? and ??.

Table 1: Parameters for the evolution of the ECGP EHW classifier.

ni / no / nr / nc 640 / 1 / 1 / 50–250
na / n f 4 / B4

#fitness evaluations per generation 4
mutation probability 1.0
mutation rate 0.03
one point mutation probability 0.6
compress / expand probability 0.1 / 0.2
module point mutation probability 0.04
add / remove module input probability 0.01 / 0.02
add / remove module output probability 0.01 / 0.02
maximum module size 10

1.4 Fitness Assignment and Evolutionary Algorithm

There are several ways to evolve the CDMs and CCs in the proposed classifica-
tion architecture. Related work used incremental and two-step evolution to partition
the task of evolutionary optimization into smaller subtasks. In [9] single CDMs are
evolved incrementally and independently, before being assembled to a complete
classifier. Two step evolution is presented in [24]. In the first step the CMDs are
evolved independently. In the second step the CDMs are combined and the CDM
selectors of the overall architecture are evolved considering the fitness of the com-
plete system.

We use direct evolution of the complete classifier. Through a series of exper-
iments we have observed that partitioning the evolutionary optimization process
leads to classifiers with acceptable classification performance rather quickly, but
letting the evolutionary algorithm exploit the complete search space delivers the
highest classification performance.

For classifier evolution, we define the fitness as the reciprocal and squared
classification error. With categories Cp (p = 1, . . . ,P) and training vector set X
(X = ∪̇P

i=1Xi) where Xi is the set of training vector for category i, the fitness of a
classifier c is defined as:

f (c) =


1+

1
|X |

P

∑
i=1

[
∑

x∈Xi

|i− c(x)|

]2


−1

.

We employ a (1+4) Evolutionary Strategy (ES) to evolve the classifier. The evo-
lutionary scheme creates four off-springs by mutation and selects the fittest child to
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become the parent for the next generation. If no child has a fitness superior to the
parent’s one, the parent proceeds to the next generation.

1.5 Experiments and Results

We compare the performance of our classification architecture to the following pop-
ular and state-of-the-art classification algorithms: k-th Nearest Neighbour (kNN),
Decision Trees (DT), Artificial Neuronal Networks (ANN), and Support Vector Ma-
chines (SVM). We use k-fold cross validation to determine the classification rates
for all classifiers. k-fold cross validation segments an overall data set into k subsets
of approximately equal size. In k runs, one subset is used for testing whereas the
others are used for the training of the classifiers.

We report on two experiments. The objective of the first experiment (Day1-3)
is the investigation of the asymptotical classification performance. The collected
EMG data consisting of overall 60 repetitions of eight movements recorded on three
consecutive days is evaluated using the leave-one-out validation scheme, which sets
k to the number of feature vectors. The second experiment (2of3) is defined from
the application perspective: An amputee would rely on data from past days to train
the prosthesis for use on the next day. Thus, we use 3-fold cross validation with data
sets defined by the three recording days.

To compare the classification performance of the different approaches we use
the classification accuracy expressed by the error rate. Table 2(a) presents the train-
ing error rates pointing to the classifiers’ approximation abilities, and Table 2(b)
presents the test error rates showing the classifiers’ generalization abilities. Table 3
presents the test error rates for the individual movements. In all tables, EHW de-
notes our classification architecture and the best performing classifier is marked in
bold.

Since the EHW classifier is evolved from random genomes, each classifier im-
plements a different combinational function and the classification rates vary slightly.
For the Day1–3 experiment, the leave-one-out technique requires us to evolve
a rather high number of classifiers which averages out the differences in initial
genomes. The 2of3 experiment, however, generates only three classifiers. To achieve
sound error rates, we evolve 10× 3 classifiers and average the results. Further, the
training error for EHW is 5% in all experiments as we use this threshold as termi-
nation criterion.

The comparison of experiments Day1–3 and 2of3 in Table 2 shows that almost
all algorithms achieve better training but worse test results for the 2of3 experiment.
This is due to the fact that for the 2of3 experiment the training set is much smaller
allowing for tighter approximation, while the verification set is larger compared to
the Day1–3 experiment.

The best performing algorithms in both experiments are kNN, ANN and SVM
with only marginal performance differences, followed by EHW and DT. Interest-
ingly, the good performance of the simple kNN techniques points to the fact that our
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Table 2: Training errors (approximation) are summarized in (a), test errors (gener-
alization) are summarized in (b).

(a)

Day1–3 2of3
kNN 3.80 % 3.74 %
DT 2.68 % 2.69 %
ANN 0.22% 0.11%
SVM 3.58 % 3.03 %
EHW 5.00 % 5.00 %

(b)

Day1–3 2of3
kNN 4.25 % 5.61 %
DT 8.29 % 13.26 %
ANN 2.70 % 6.02 %
SVM 3.80 % 6.51 %
EHW 9.00 % 10.6 %

Table 3: 2of3: Individual movement errors (generalization).

Close Extension Flexion Open Pronation Radial dev. Supination Ulnar dev.
KNN 3.92% 0.0% 0.0% 5.17% 6.78% 19.23% 3.57% 6.78%
DT 5.88% 6.78% 5.66% 13.79% 16.95% 17.31% 39.29% 15.25%
ANN 9.80% 1.69% 0.0% 8.62% 5.08% 15.38% 5.36% 3.39%
SVM 5.88% 0.0% 0.0% 8.62% 8.47% 19.23% 3.57% 6.78%
EHW 5.90% 12.20% 0.0% 3.50% 12.20% 12.80% 22.20% 5.80%

EMG signal classification problem is not too hard. Table 3 shows, however, that the
individual movements are not consistently classified best by kNN, ANN and SVM.
For the ’flexion’, ’open’ and ’radial deviation’ movements the EHW classifier is on
par or even outperforms kNN, ANN and SVM.

The main result of our EMG signal classification experiments is that for prosthe-
sis control EHW classifiers achieve accuracies sufficiently close to that of state-of-
the-art classification algorithms [11]. Depending on the specific set of movements
to classify, other algorithms might deliver slightly increased accuracies. The appeal
of EHW classifiers, however, roots in their compactness, fast computation, and their
suitability for self-adaptation.

2 EvoCaches: Application-specific Adaptation of Cache
Mappings

In this section we present EvoCache, a novel approach for implementing application-
specific caches. The key innovation of EvoCache is to make the function that maps
memory addresses from the CPU address space to cache indices programmable. We
support arbitrary Boolean mapping functions that are implemented within a small
reconfigurable logic fabric. For finding suitable cache mapping functions we rely on
Cartesian Genetic Programming for circuit representation and Evolutionary Strate-
gies for fast optimization. We evaluate the use of EvoCache in an embedded pro-
cessor for two specific applications (JPEG and BZIP2 compression) with respect to
execution time, cache miss rate and energy consumption. We show that the evolv-
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able hardware approach for optimizing the cache functions not only significantly
improves the cache performance for the training data used during optimization,
but that the evolved mapping functions generalize very well. Compared to a con-
ventional cache architecture, EvoCache applied to test data achieves a reduction in
execution time of up to 14.31% for JPEG (10.98% for BZIP2), and in energy con-
sumption by 16.43% for JPEG (10.70% for BZIP2). We also discuss the integration
of EvoCache into the operating system and show that the area and delay overheads
introduced by EvoCache are acceptable.

2.1 The EvoCache Concept
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Fig. 5: The evolvable cache (EvoCache) architecture provides a configurable map-
ping from CPU memory addresses to cache indices. The optimization process re-
configures node functions and the wiring between the nodes. The nodes represent
Boolean functions with na inputs. The figure shows an example of a two way set
associative cache [16].

The key idea of the EvoCache approach is presented in Figure 5. A very small
reconfigurable logic fabric implements a hashing function that maps a part of a
memory address to a cache line index. The hashing function is optimized to achieve
a low overall execution time for a specific application. The algorithmic methods
for optimization originate in the Evolvable Hardware (EHW) domain which aims
at automated circuit design and optimization by combining evolutionary algorithms
and reconfigurable hardware technology.

Our architecture provides a mapping function memory that can store several con-
figurations for the reconfigurable logic fabric, which allows for quickly switching to
different memory-to-cache address mappings. To prevent aliasing, i.e., storing sev-
eral potentially dirty copies of the same physical address at different indices in the
cache, we flush the cache when a new mapping is activated.

The EvoCache approach is orthogonal to other work trying to select and/or re-
configure the cache organization in an application-specific way, e.g., [1, 18, 31].
While Figure 5 displays an address mapping for a byte-addressable architecture to a
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2-way associative cache with a block size of four words, the EvoCache principle is
applicable to all possible configurations and levels of caches. Compared to classical
modulo mappings or mappings based on bit permutations [23] and XOR functions
[27], EvoCaches utilize more complex, evolved hashing functions allowing them to
reduce an application’s overall execution time and energy requirement as we will
show in the remainder of this section.

Including EvoCaches into a processor architecture will also increase the logic
area, the hit time and the overall number of memory cells for the cache. The in-
crease in logic area is due to the reconfigurable fabric itself which is assumed to
be small as the fabric comprises only a handful of look-up tables (LUTs). Addi-
tionally, we require a mapping function memory to store the configurations for the
logic fabric. The size of a configuration is architecture dependent. The architecture
used for the case study in this paper comes with a configuration size of 151 bytes.
The increase of the cache size is due to the fact that the flexibility in the hashing
function requires us to store the full address excluding block and byte offsets as
tags in the cache. The additional overhead incurred depends on the actual cache
configuration. For example, a conventional 4-way set associative cache of 16 KByte
data with block size of two words for a byte-addressable architecture with 32 bit
addresses comes with an overhead of 25.56%, where the overhead includes for each
cache block the valid bit and the tag. Switching to an EvoCache of same data size
and organization increases the overhead to 34.88%. We think this overhead is bear-
able since today most processor designs are not restricted by silicon area but by
performance and performance per energy. The increase in hit time is more critical.
The additional delay depends strongly on the depth of the LUT network. This depth
can be restricted in the optimization process to satisfy timing constraints. More-
over, for many embedded processors with clock frequencies well below one GHz,
the pressure on the timing is moderate. High-performance processors, on the other
hand, have several levels of cache where only the first level is optimized for hit time.
Here, the EvoCache approach can still be applied to higher level caches.

Integrating EvoCaches with a standard operating system environment requires
only a few modifications. For keeping the information about the cache mapping as
close as possible with the application’s binary, we choose to store it as an optional
section in the binary itself. Since all commonly used binary formats, such as COFF,
ELF or MachO, support storing multiple code and data areas (sections) in the binary,
this feature can be easily added without requiring a new binary format. The cache
mapping information can be added by the standard linker. Since this information is
small (typically a few hundred bits) the binary size is only slightly increased.

For activating the cache mapping when an application is started, the application
loader needs to be extended. After loading the application’s text and data sections,
the loader configures the mapping function memory according to the information
stored in the binary. The operating system also stores the cache mapping as part of
the context of a process. For multi-tasking operating systems, the operating system
changes the cache mapping at every context switch to a user task.

The proposed change of the binary format integrates the support for EvoCaches
in a backward compatible way. First, the additional section containing the cache
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mapping will be ignored when the application is executed on a system without Evo-
Cache. Second, systems with EvoCache can still execute standard binaries. If the
loader detects that no cache mapping information is present, it will initialize the
classical modulo cache mapping.

In next sections, we will determine a suitable cache mapping function for an
application and a specific input data set with the evolutionary optimizer, and then
evaluate the performance on different input data sets to verify the generalization
capability of EvoCaches.

2.2 System Simulation and Metrics

This section describes the configuration of the hardware representation model, the
evolutionary optimization algorithm, and the method used to evaluate the fitness of
candidate circuits.

We have configured the CGP model to use look-up tables (LUTs) with four in-
puts (na = 4) as node functions. The functional set f for the nodes has not been
constrained, i.e., f = B16. To reduce the search space and thus increase the efficacy
of the evolutionary optimizer, we configure the CGP model to have only one row
(nr = 1) but nc = 32 columns. The levels-back parameter is set to l = 31. The cir-
cuit’s inputs are fed from ni = 27 primary inputs taken from the memory address.
The no = 15 bit outputs of the circuit encode the cache line index. The circuit depth
is an important parameter for EvoCaches as it is proportional to the delay of the
resulting hashing function which adds to the cache hit time. While constraining the
circuit depth during optimization can be easily done, the experiments have been
conducted with unconstrained circuit depth. Instead, in Section 2.3 we report on the
depths and sizes of the evolved circuits.

As optimization technique we use an 1+ 4 ES scheme, where in every genera-
tion one parent creates four children through mutation. One of the fittest children
proceeds to the next generation. The parent is promoted to the next generation if it
excels all children. The mutation operator modifies a single gene during child cre-
ation, i.e., the function of a single logic node or the wiring of one of its inputs is
affected.

2.2.1 Fitness Evaluation and SimpleScalar Integration

For the experiments, we leverage our MOVES EHW toolbox [14], which comprises
different hardware representation models and evolutionary optimizers. Additionally,
the toolbox generates a set of jobs for fitness evaluation and distributes them on a
compute cluster.

The tool setup is presented in Figure 6. The MOVES toolbox includes the CGP
model and the ES. Whenever a new candidate circuit is generated, it is passed to the
processor simulator SimpleScalar [2] for fitness evaluation. SimpleScalar reads the
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description of the circuit and simulates the execution of a specified benchmark and
input data on a processor with given cache configuration in a cycle-accurate manner.
We have chosen SimpleScalar for system simulation as it is easily extensible and it
models a variant of the widely-used MIPS instruction set architecture. Two modi-
fications to the original SimpleScalar tool have been necessary. First, its command
line interface has been extended to include the activation and specification of up to
four mapping functions. These circuit specifications are read in and stored in a data
structure. Second, for the actual mapping between addresses and cache line index,
SimpleScalar needs to determine the logic result for the mapping function. To this
end, the circuit evaluation routine already available in the MOVES toolbox has been
extracted into a library (moves.lib) and linked with SimpleScalar. In each simulation
run, SimpleScalar determines an application’s overall runtime and feeds it back as
fitness value into the evolutionary optimizer.

MOVES
EHW Toolbox

SimpleScalar
System Simulator

moves.lib

address mapping   function

memory address

indexexecution time [cycles]

CGP Circuits GA, ES 
MOEAs

MOVES-toolbox

fitness evaluation

 cache configuration,
 benchmark,
 input data

 execution time, miss rate, energy

Fig. 6: EvoCache tool setup: SimpleScalar is invoked by the MOVES toolbox and
returns the overall execution time in clock cycles as a fitness measure.

2.2.2 Miss Rate and Energy

Besides the cycle-accurate runtime, SimpleScalar determines the miss rates for the
different levels of caches. Our interest in the miss rates is motivated by the fact
that related work used miss rates to measure the fitness of a specific cache con-
figuration. However, for more sophisticated processor architectures metrics solely
based on miss rates might be less conclusive than execution time. The downside
of using the cycle-accurate execution time as main metric is the long simulation
time. We have constrained the simulation time to three to five minutes for a sin-
gle fitness evaluation, which results in a overall runtime of roughly one week for
a single and complete ES run. These constraints on the simulation time resulted in
limiting the input data size for the benchmarked applications to some 100 KBytes
which poses sufficient pressure on the cache architecture of an embedded proces-
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sor as modeled in our work. However, a modern general-purpose processor’s cache
architecture would not be stressed sufficiently and thus require the simulation of
application runs on larger data sizes.

As energy estimate we use a variant of the energy model presented in [31] which
splits the energy demand in a static and dynamic part. We model an embedded
processor with up to two levels of cache and an external memory. For each of the
caches, i.e., split level one caches L1:I and L1:D and unified level two cache L2:U
as well as for the external memory, the static or stand-by energy per cycle is given
by EL1:I,s,EL1:D,s,EL2:U,s and EM,s. With c as the number of clock cycles required
for program execution, the static energy is

Estatic = (EL1:I,s +EL1:D,s +EL2:U,s +EM,s) · c

The dynamic energies per access are given by EL1:I,d ,EL1:D,d ,EL2:U,d and EM,d and
the number of accesses as aL1:I ,aL1:D,aL2:U and aM . Thus, the dynamic energy re-
sults in

Edynamic = EL1:I,d ·aL1:I +EL1:D,d ·aL1:D +

EL2:U,d ·aL2:U +EM,d ·aM

The actual values in [nJ] for the static energy per cycle and dynamic energy per
access are derived from the CACTI cache model [20] for a 90 nm technology node.
For the external memory, these values have been derived from the data-sheet of a
standard V58C2256 DDR SDRAM module. The overall number of clock cycles and
the number of accesses are determined by the SimpleScalar simulator. Finally, the
CPU energy Ecpu is computed by assuming a CPU with an average power consump-
tion of 0.45 mW per MHz at a clock frequency of 200 MHz implemented in 90 nm
technology [29]. The overall energy for an application run thus adds up to

E = Ecpu +Estatic +Edynamic

2.3 Experiments and Results

To evaluate the EvoCache concept, we have configured a processor and its memory
hierarchy in a configuration similar to those of current ARM processors [29]. The
configuration is shown in Figure 7 and includes a split first level cache and a unified
second level cache. The L1 caches are 2-way associative with a hit latency of one
cycle, 64 sets and a block size of 16 bytes. The L2 cache has an associativity of
four ways with a hit latency of 6 cycles, 128 sets and a block size of 32 bytes.
The memory bus between the L2 cache and the external memory is 8 bytes wide.
The external memory shows an access time of 18 cycles and a 2-cycle delay for
consecutive data transfers in burst mode. Hence, the miss penalty for the L2 cache
amounts to 24 cycles. Using this configuration, a conventional cache system for a
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byte-addressable architecture with 32 bit addresses has a 22 bit tag and a 6 bit index
for the L1 caches and a 20 bit tag and 7 bit index for the L2 cache, respectively.
For an EvoCache, the original tags and indices merge into a single tag of 28 and
27 bits for the L1 and L2 caches, respectively. We have evolved mapping functions
for two optimization scenarios. In the first optimization scenario, only the first level
caches (LI:I and L1:D) are EvoCaches with evolved mapping functions while in
the second scenario all three caches receive evolved mapping functions. Thus, a
single chromosome describing the system’s mapping functions consists of two CGP
chromosomes in the first optimization scenario and of three CGP chromosomes in
the second optimization scenario.

CPU

L1:I

L1:D

L2:U MEM

1
2

Fig. 7: Two memory hierarchy configurations considered for the optimization of the
address mapping function: (1) optimization of split first level caches (L1:I,L1:D),
(2) optimization of an additional unified second level cache (L1:I, L1:D, L2:U).

For evaluation we have simulated the execution of two benchmarks, BZIP2 (ver-
sion 1.0.4) and JPEG (version 6a), each with different sets of input data. BZIP2 is a
recent data compressor based on the Burrows-Wheeler transformation [19] and was
reported to cause a large amount of cache misses. The picture encoding application
JPEG [28] is a commonly used benchmark for performance analysis.

For each combination of benchmark and optimization scenario, we have pro-
ceeded as follows. First, we have evolved a mapping function for a given input data
set, denoted as training data. This optimization step has been repeated for 16 times.
To study the potential of EvoCaches, we analyze the fitness development of the best
and the worst individual in each generation as well as the average over all 16 runs
over two reference systems. These are a cache-less system with a one cycle mem-
ory access time which as such is unrealistic but serves as point of reference, and a
two-level cache with classical modulo address mapping functions.

Second, we have determined the generalization behavior by evaluating the best
evolved mapping functions on different sets of input data, denoted as test data. These
results are actually more important than the results achieved for training data, as they
reflect the practical use case of EvoCaches.

For BZIP2, the training data set consists of the HTML code from Wikipedia’s
page on ’Genetic Programming’ [30]. The test data consists of 30 data sets parti-
tioned in HTML data, Linux binaries, and human-readable text files. For JPEG, the
training data set originates from the standard picture contained in the JPEG source
code distribution. As test data, we use ten data sets from [26] and [5].
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2.3.1 Training EvoCaches

Table 4 summarizes the training results. The numbers in the ’absolute’-columns are
calculated as reciprocal of the overall execution time relative to the cache-less refer-
ence system with a one cycle access time. That is, since BZIP2 executing training
data on the cache-less reference system requires 13’131’325 cycles and on the clas-
sical modulo cache 34’417’080 cycles (2.62X slowdown), the modulo cache rates
at 0.3815. Analog, the JPEG benchmark is executed on a one cycle access mem-
ory system in 47’723’253 cycles, and in 80’148’296 cycles on a classical modulo
cache system. It is a slow-down of 1.67X and rate the JPEG benchmark at 0.5954.
In the ’relative’-column noted ratio is the speed-up to the modulo cache system. We
can observe that the average performance achieved for optimizing both cache lev-
els is actually higher than the performance achieved for optimizing only level one
caches. The best individual with 17.1% improvement in runtime is found, however,
by optimizing level one caches.

BZIP2 JPEG
absolute relative absolute relative

modulo cache 0.3815 - 0.5954 -
L1:I,D avg 0.4038 5.8% 0.6623 11.2%

max 0.4086 7.1% 0.6975 17.1%
L1:I,D, avg 0.4037 5.8% 0.6718 12.8%
L2:U max 0.4174 9.4% 0.6962 16.9%

Table 4: Performance of the average and the best individuals on training data for
BZIP2 after 2500 generations and for JPEG after 1400 generations

2.3.2 Testing EvoCaches

To verify the generalization performance of EvoCaches, we have evaluated the exe-
cution times, the miss rates, and the energy requirements for BZIP2 and JPEG and
the different optimizations scenarios. The test data for BZIP2 comprise ten data sets
taken from Linux binaries (ELF benchmark), ten data sets taken from HTML dumps
of popular web sites (HTML benchmark), and ten data sets taken from RFCs (TXT
benchmark). The detailed results are shown in Table 5. In this table, the optimization
scenario L1 denotes optimization of level one caches, L12 the optimization of both
levels of caches. The numbers for a single benchmark and optimization scenario
are averaged over the according ten data sets and measured relatively to the perfor-
mance of a conventional system with modulo address mappings. That is, positive
percentages indicate an improvement in execution time, a reduction in miss rate,
and a reduction in energy. The miss rates for all caches have been added to achieve
the miss rate metric.
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BZIP2 JPEG
ELF HTML TXT

L1 L12 L1 L12 L1 L12 L1 L12
execution best 4.92% 5.90% 5.31% 6.98% 7.30% 10.98% 14.31% 12.96%
time average 4.36% 5.60% 3.86% 4.94% 4.49% 6.66% 12.73% 10.78%

worst 3.36% 4.87% 2.47% 3.46% -4.15% 1.95% 11.48% 9.12%
miss best 6.11% 9.00% 5.94% 8.92% 8.45% 11.38% 41.25% 40.35%
rate average 5.59% 8.51% 4.15% 6.41% 4.82% 8.26% 37.40% 37.19%

worst 4.13% 7.94% 1.64% 4.88% -9.31% 2.63% 31.64% 30.46%
energy best 4.64% 5.49% 5.61% 7.31% 6.88% 10.70% 16.43% 14.46%
requirement average 4.13% 5.23% 4.53% 5.29% 4.93% 6.98% 14.19% 11.93%

worst 3.27% 4.57% 3.21% 3.77% 2.83% 2.16% 12.53% 10.49%

Table 5: EvoCache generalization performance for BZIP2 trained on
the Wikipedia Genetic Programming (GP) HTML page. The test data
are partitioned into compressing Linux binaries in ELF format (bash,
cpio, dbus-daemon, awk, sh, gawk, tar, tcsh, vim,
zsh), web pages in HTML format (Ancient Egypt [W], Ancient
Greece [W], Ancient Rome [W], Germany [W], heise.de,
Andrey Kolmogorov [W], sailinganarchy.com, spiegel.de,
wired.com, slashdot.org) and text files (rfc 2068, 2246, 845,
1000, 1001, 1002, 1005, 1008, 1009, 2658). Data sets marked
with [W] have been collected from wikipedia.org.

The following observations can be made for the BZIP2 benchmark analyzing
the results in Table 5:

• EvoCaches generalize well and deliver for all test data substantial performance
improvements. The improvements in execution time are up to 10.98% and the
reductions in energy are up to 10.70%.

• Having EvoCaches in both levels of cache (L1:I, L1:D and L2:U) leads to higher
performance gains than having EvoCaches only in level one.

For testing EvoCaches on JPEG, we have selected ten images from [26] and [5].
The detailed results are shown in Table 5 and can be summarized as follows:

• EvoCaches again generalize well with even larger improvements in execution
time (up to 14.31%) and reductions in energy (up to 16.43%).

• The average performance when optimizing L1 caches only is about 2% higher
than when optimizing both cache levels. This corresponds with the observation
made when training EvoCaches for JPEG where the best training performance
was reached by optimizing L1 caches only. Consequently, the individual with
best test performance gains better test performance, even if not being optimized
additionally for the L2 cache.

• While the reductions in the miss rates are rather high, the reductions in execution
times are lower. This demonstrates that for multiple levels of cache (or sophis-
ticated processor architectures) the total miss rate is not necessarily a suitable
metric for quantitatively determining a performance improvement.
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Fig. 8: Summary of the EvoCache generalization performance for BZIP2 and
JPEG. The data is for randomly initialized mapping functions. The best, worst and
average values are indicated for every optimization scenario and metric.

BZIP2 JPEG
delay size delay size

L1:I,D avg 4.63 16.94 4.38 15.13
max 7 22 7 22
best 4 18 6 19

L1:I,D avg 4.19 15.81 4.44 15.44
L2:U max 8 24 6 22

best 3 14 4 17

Table 6: Area and delay parameters for the evolved reconfigurable address mapping
functions.

The results of our experiments are summarized in Figure 8. The figure shows
for both benchmarks, BZIP2 and JPEG, and optimization scenarios the relative
improvement for EvoCaches in execution time, miss rate and energy requirement
over a modulo address mapping function.

The area (number of 4-LUTs) and the delay (depth of the circuit) parameters
for the resulting reconfigurable logic circuits are presented in Table 6. Besides the
average and maximal values, also the values for the fittest circuit which has been
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used for testing is listed. These circuits show depths between three and six LUTs.
It has to be noted that the circuits resulted from an evolutionary design process and
have thus not been optimized for area or delay. Delay minimization could possibly
further reduce the circuit’s propagation time and thus the cache hit time.

2.4 Conclusion

In this section, we have presented EvoCaches that rely on two main ideas. First,
the function mapping an address to a cache line index is implemented by a small
reconfigurable logic fabric. Second, the function is optimized by an evolutionary
algorithm with the goal to achieve a minimal overall execution time with respect
to a specific application. We have defined different optimization scenarios, optimiz-
ing split level one caches and, additionally, a unified level two cache and conducted
experiments with BZIP2 and JPEG benchmarks. After evolving the mapping func-
tions, we have tested the best solutions on independent data sets and evaluated the
overall execution times, miss rates, and energy requirements. Compared to conven-
tional caches, we have observed runtime improvements of up to 10.98% for BZIP2
and up to 14.31% for JPEG and energy reductions of up to 10.70% for BZIP2 and
up to 16.43% for JPEG.
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