
A Hardware Accelerator for k-th Nearest Neighbor
Thinning

Tobias Schumacher, Robert Meiche, Paul Kaufmann, Enno Lübbers, Christian Plessl and Marco Platzner
Paderborn Center for Parallel Computing, University of Paderborn

Fuerstenallee 11, 33102 Paderborn, Germany
Email: tobe@uni-paderborn.de

Abstract—This paper presents an accelerator for k-th nearest
neighbor thinning, a run time intensive algorithmic kernel used
in recent multi-objective optimizers. We discuss the thinning
algorithm and the accelerator architecture with its modules
and operation, and evaluate the accelerator with respect to
two different application scenarios. The first is an embedded
computing scenario where the accelerator core is part of a
configurable system-on-chip implemented on a modern platform
FPGA. We show the resource requirements for different instances
of the accelerator and report on the raw speedups achieved,
which are up to 358x. The second scenario is in high performance
computing where we map the accelerator core to a cutting-edge
reconfigurable computer, the XD1000 system, and achieve overall
speedups of up to 6.6x compared to a software reference.

Index Terms—k-th nearest neighbor thinning, reconfigurable
accelerator, FPGA, SPEA2.

I. INTRODUCTION

k-th-nearest-neighbor (KNN) methods are omnipresent in
many areas of science and engineering. In statistics and data
analysis, for example, KNN techniques play an important role
for the non-parametric estimation of density functions from
data samples [1]. Given a set of n data samples, where each
sample i is a d-dimensional vector, an Euclidean distance
metric σi is computed for any pair of samples. For each data
sample, the resulting n distance values are sorted in ascending
order, i.e., σ1

i ≤ σ2
i , . . . ,≤ σn

i . A KNN density estimate f̂(i)
can then be formulated by setting:

f̂(i) ∝ 1
σk

i

(1)

The parameter k is typically chosen as k ≈
√
n [2]. Thus,

the local density around each data sample i is estimated by
the reciprocal of the distance to the k-th nearest neighbor. In
other words, a low density means that a d-dimensional sphere
with data sample i at its origin has to be rather large in order
to contain k data samples.

The KNN approach is also widely applied for solving
classifications problems, for example in machine learning,
data mining and stochastic optimization [3]. There, a KNN
classifier requires a labelled training data set consisting of d-
dimensional feature vectors and their class labels. In order to
classify a new feature vector, the k nearest training vectors
are determined according to some distance metric. A 1-NN
classifier will then assign the class of the closest training vector
to the new vector. For k > 1, typically a voting scheme is

applied and the new vector receives the class of the majority
votes. There exists a great variety of KNN classifiers [4],
differing in methods to break ties, in the efficiency of the used
query data structures, and in the techniques applied to reduce
the set of training data samples.

The reduction of the size of data samples is often desired to
reduce both the classification time and the memory required
to store the data set. Many reduction techniques fall into
the category of condensing or thinning approaches [5], that
aim at properly selecting a subset of training vectors from
the original data set. Well-known thinning approaches are the
condensed nearest neighbor algorithm, the reduced nearest
neighbor algorithm, Baram’s method, and proximity graph
based thinning (see, e.g., [4]).

Interestingly, KNN-based thinning algorithms also find use
in recent multi-objective evolutionary optimizers. Such opti-
mizers are basically population-based, stochastic search al-
gorithms inspired by principles from evolution theory. They
try to solve a problem by keeping a set (population) of
candidate solutions (individuals) in parallel and improving the
quality (fitness) of the individuals over a number of iterations
(generations). To form a new generation, genetically-inspired
operators such as crossover and mutation are applied to the
individuals. A fitness-based selection process steers the popu-
lation towards better candidates. When optimizing for several,
typically conflicting, objectives, the goal is to find reasonable
trade-offs between the different objectives. The definition of
a reasonable trade-off can be based on the concept of Pareto
dominance. A solution vector i dominates another solution
vector j when i is superior or equal to j in all objectives, and
superior in at least one objective. A non-dominated solution
is denoted as a Pareto point. As evolutionary algorithms are
population-based methods, they are well-suited to approximate
the set of Pareto points (Pareto front) in a single optimization
run.

In particular, one of the most popular multi-objective opti-
mizers, SPEA2 [6], relies on KNN methods for determining
the fitness of solutions (using a KNN density estimate similar
to Equation 1) and also for thinning out the approximated
Pareto fronts. The latter becomes necessary when the al-
gorithm generates more non-dominated solutions than can
be stored in the fixed-size archive, which is rather likely
for higher-dimensional problems. Depending on the actual
problem under optimization, this KNN thinning technique

easily takes the vast majority of the optimizer’s run time.
The acceleration of KNN-based thinning has not yet been

studied in related work. However, related methods have been
successfully accelerated with FPGAs. For example, Yeh et al.
present a KNN classifier [7] that operates in the wavelet
domain and uses partial distance search to accelerate the
classification process. The resulting architecture is integrated
as a core to the Altera NIOS CPU softcore. In [8] Chikhi et al.
present an FPGA accelerated KNN classifier for content-based
image retrieval that achieves a speedup of 45x over a software
implementation. Also the related k-means clustering method
has been successfully accelerated in reconfigurable hardware.
For example, Saegusa and Maruyama have presented an ar-
chitecture [9] that can perform k-means clustering on video
data in realtime.

The contribution of the work presented in this paper is the
development of a modular and portable hardware accelerator
for KNN-based thinning. While the accelerator core aims
at speeding up multi-objective evolutionary optimizers such
as SPEA2, the main modules of the core are exactly the
same as needed for other KNN-based methods, widening the
applicability of this work.

The paper is organized as follows: Section II formally intro-
duces the KNN-based thinning method that is accelerated in
this work. Section III presents the parametrized architecture of
the KNN core. In Section IV we evaluate the raw performance
and the application-level performance of the KNN accelerator
for two scenarios. Finally, we present conclusions and outline
future work in Section V.

II. k-TH NEAREST NEIGHBOR THINNING

In this section, we detail the KNN-based thinning algorithm
for reducing a set of vectors in a multi-dimensional feature
space to a smaller set of representative vectors. The procedure,
shown in Algorithm 1, is called with a set P of different
d-dimensional vectors pi = (pi1, pi2, . . . , pid) and N , the
targeted cardinality of P , and successively eliminates vectors
with the shortest Euclidean distance to their neighbors until
P has been reduced to N elements. In each iteration, the
algorithm first constructs a distance matrix σ = (σil) from the
pair-wise Euclidean distances σil between all vectors. Sorting
σ row-wise in ascending order defines sorted distance vectors
σi
′ of length m. While initially equal to |P|, the number

of vectors m is reduced by one in each iteration. Now, the
algorithm iterates over all columns of σ′. Starting with column
l = 3, the rows σ′i with minimum distance values σ′il among
all distances in column l are selected and assigned to setM. If
the minimum is unique, the respective row σ′i ∈ σ′ as well as
the corresponding vector pi are deleted which reduces the set
of vectors P . If the minimum is not unique, the next column of
σ′ is considered which corresponds to checking the distances
to the next closest neighbors. If no unique minimal distance is
found for all columns of σ′, an arbitrary row having a minimal
distance value in the last column is deleted. Obviously, the first
two columns never need to be considered since each vector

has a distance of 0 to itself (first column) and the distances
between pairs of vectors are symmetric (second column).

Algorithm 1 KNN thinning algorithm
1: procedure KNN_THINNING(P, N)
2: while |P| > N do
3: compute/update σil ←

√∑d
j=1 (pij − plj)2

4: ∀ rows of σ : σi
′ ← sort(σi)

5: for l← 3, . . . ,m do
6: M← {σ′i | ∀σ′jl : σ′il ≤ σ′jl}
7: if |M| == 1 then
8: break
9: end if

10: end for
11: delete arbitrary row σi ∈M from σ′

12: P ← P \ {pi}
13: end while
14: end procedure

The operation of the KNN-based thinning algorithm is
illustrated in the example shown in Figure 1. The initial
population of six 2-dimensional vectors as well as the three
vectors that are discarded by three iterations of the thinning
algorithm are shown in Figure 1(a). The distance matrix σ
for the first iteration is presented in Figure 1(b), and the row-
wise sorted distance matrix σ′ in Figure 1(c). Note that the
matrices actually show the square distances which is sufficient
for this algorithm. A unique minimum is found in the third
column which leads to the deletion of row b from the matrix
and vector b from the population, respectively. In the second
iteration, the distance matrix is updated and re-sorted which
results in the matrix of Figure 1(d). Again, a unique minimum
is identified in the third column and, consequently, row e and
vector e are deleted. Finally, the third iteration leads to the
deletion of vector c.

III. ACCELERATOR ARCHITECTURE

This section presents the architecture of the KNN-based
thinning accelerator, including the main datapath modules and
the system interface.

A. Accelerator Modules

The accelerator is composed of four main datapath modules
that together implement the different tasks of the thinning
procedure shown in Algorithm 1. These modules are:
• the vector table
• the distance calculator
• the distance sorter
• the row selector
Figure 2 displays the block diagram for the accelerator’s

datapath. A controller module is responsible for handling the
commands from the bus interface and for sequencing the
execution of the datapath modules. For simplicity, control lines
have been omitted in Figure 2. The datapath modules perform
following the tasks:

row-wise sorted distance matrices σ'

0
5

13
50

5
0
2

25

13
2
0

13

50
25
13
0

a b c d

a
b
c
d

98
61
41
8

128
85
61
18

98
128

61
85

41
61

8
18

0
2

2
0

e
f

e f
0
0
0
0

5
2
2
8

13

13
13

50
25
13
18

a
b
c
d

98
61
41
25

128
85
61
50

0
0

2
2

8
18

41
61

61
85

98
128

e
f

5 0
0
0

13
13
8

50
13
13

98
41
18

a
c
d

128
61
50

0
0

2
2 18

41
61

98
128

e
f

8f

c
b

a

d4
3
2
1

1 2 3 4

8
7
6
5

5 6 7 8 9

9

e

initial distance matrix σ

(a) (b) (c) (d)

0
0
0

13
13
13

50a
c
d

128
61

0 18 61 128f

13
18 50

(e)

Figure 1. Example for the KNN-based thinning algorithm in two dimensions: thinning 6 vectors to 3 vectors

VECTOR_RAM

INDEX_RAM

DISTANCE
CALCULATOR

DISTANCE
RAM

DISTANCE
RAM

DISTANCE
SORTER

DISTANCE
SORTER

ROW
SELECTOR

ADDRESS
GEN

VEC_REG

DIM_REG

EN_REG

DONE_REG

MANT_REG

CONTROL

VECTOR TABLE

SYSTEM BUS

GOAL_REG

Figure 2. Datapath of the KNN-based thinning accelerator

a) Vector table: The vector table module stores and
manages the data vectors during the thinning process. The
module mainly consists of two RAM blocks: the vector RAM
that stores the input vectors and the index RAM which stores
the indices of active vectors located in the vector RAM.
Initially, the vectors are written into the vector RAM and the
index RAM is initialized with entries running from 0 to |P|−1.
The current number of active vectors is stored in the register
VEC_REG within the controller module, and is also initialized
to |P| − 1.

During the thinning process, vectors are successively being
removed from the matrix σ′. This step is implemented in
the vector table module by marking the vector to be deleted
as inactive. If vector i is to be deleted, the index RAM is
compacted by copying the last active element of the index
RAM (pointed to by VEC_REG) to position i of the index
RAM. Hence, at any time the contents of the first VEC_REG
entries in the index RAM point to the remaining active vectors
in the vector RAM.

The data in the vector RAM is organized vector-by-vector,
each vector in ascending dimensions. The address of a specific

data element pim in the vector RAM is thus easily determined
by the address generator as address(pim) = INDEX_RAM[i] ·
d+m, where d is the number of dimensions.

b) Distance calculator: This module computes σ, the
pair-wise distances between all active vectors. The vector
table’s address generator is used to fetch the components for
each pair of vectors from the vector RAM. The resulting
distances are written to the distance RAM blocks. Although
the thinning algorithm uses the Euclidean distance metric,
we omit the square root operation in our accelerator. This
has no impact on the result as the algorithm applies only
comparison operations to the distance values. The distance
calculator module exploits the pair-wise symmetry of the
distance values and writes a distance result σij not only to
the i-th row in σ but concurrently also the j-th row as σji.
As soon as all distances for one vector are calculated, the
distance sorter module associated to the respective distance
RAM is started by the controller.

c) Distance sorter: The distance sorter modules sort the
distance values in the distance RAM blocks. To speed up
the sorting step the architecture employs a dedicated sorter

ADDR_GEN

CMP & STORE
LOGIC

MEMORY

ADDR

valid

REG REG

p0_addr

p0_dout

p1_addr
p1_din
p1_wren

Figure 3. Architecture of the distance sorter

for each distance RAM block, i.e., all rows σi are sorted in
parallel. Our current implementation relies on Bubblesort for
sorting.

Algorithm 2 Pseudocode executed by the sorter module
1: procedure SORT_VECTOR(n)
2: for i← 0, . . . , n− 2 do
3: cur_max := getData(i)
4: for j ← i+ 1, . . . , n− 1 do
5: cur_val := getData(j)
6: if cur_val < curmax then
7: storeData(cur_val, j − 1)
8: else
9: storeData(cur_max, j − 1)

10: cur_max := cur_val
11: end if
12: end for
13: storeData(cur_max, n− 1)
14: end for
15: end procedure

Figure 3 shows a block diagram of the sorter module, the
functionality of the module is outlined in Algorithm 2. The
address generator roughly implements both of the for-loops,
e. g., it generates i and j in the algorithm and provides these
values as address to the first port of the memory module. The
registered address is also forwarded to the compare module.
The compare module stores the first value read from the
memory into the cur_max register. Subsequent values read
are compared to this registered value, the smaller value is
stored to the registered address and the bigger one is again
registered as cur_max. As the last step of each iteration, the
value of the cur_max register is stored to the memory.

Using a faster sorter architecture, e. g., a bitonic sorter [10],
could speedup the sorting of a single row. However, a more
sophisticated sorter requires also significantly more hardware
resources for larger distance vectors.

d) Row selector: As soon as all distance RAMs have
been sorted, the row selector module is activated by the
controller. The row selector sequentially searches all distance
RAMs for a column with a unique minimal element according
to Algorithm 1. When such an element is found, the vector

corresponding to the row with the minimal element is sched-
uled for deletion. In case no column contains a unique minimal
element, the row selector schedules the first row for deletion
that contains one of the minimal elements of the last column.
The index of the selected row (vector) is passed to the vector
table module where the index RAM is updated.

B. Interface and Operation

The accelerator core exposes an easy-to-use interface con-
sisting of six control registers and two read and writable
memories, the vector RAM and the index RAM. These blocks
are mapped into the address space of the system bus.

To prepare the operation of the core, all input vectors are
loaded to the vector RAM and the index RAM is initialized
with values from 0 to |P| − 1. After the parameters of the
KNN-based thinning procedure such as the number of vectors
(|P|), the dimension (d) and the thinning goal (N) have been
written to the control registers of the core, the execution is
enabled by triggering an enable register. The core announces
the end of the operation by setting a flag in the done register,
that can be polled or used for triggering an interrupt on the host
CPU. After the |P| −N elimination steps, the host CPU can
read the indices of the vectors that have not been eliminated
from the index RAM.

The memory mapped core interface makes porting the accel-
erator to different architectures a rather straight-forward task.
Originally, the accelerator core was targeted to be attached to
the OPB bus of a PPC or Microblaze CPU core in Xilinx
Virtex-II Pro FPGA technology. Later, we have ported the
core to an Altera Stratix-II FPGA in an XtremeData XD1000
system [11]. Adapting the core to use the HyperTransport
communication interface provided by XtremeData’s reference
design was a task of a few hours.

We have implemented the KNN accelerator core in VHDL.
The design is parametrized in the number of vectors and
dimensions through VHDL generics. These parameters, how-
ever, are maximum values. That is, a core synthesized for a
certain number of vectors can also cope with less vectors. In
contrast to an accelerator core designed to be able to handle
any number of vectors and dimensions, our core benefits from
the higher level of customization and will thus deliver higher
performance. The restriction to a maximum number of vectors
and dimension is not considered a limitation, as for a given
reconfigurable computer one can easily pre-synthesize several
accelerator instances differing in the number of vectors and
dimensions that fully utilize the available FPGA resources.
Since the problem size is known for applications using a KNN-
based thinning accelerator, the appropriate accelerator core can
be configured before the applications starts.

IV. EVALUATION

In this section we evaluate our KNN-based thinning ac-
celerator with two sets of experiments. In the first set of
experiments, we measure the raw performance of the ac-
celerator for an embedded computing scenario, where the
core is part of a configurable system-on-chip architecture

#vectors 64 128 256 capacity
#dimensions 2/4 2/4 2/4 (2VP70)

registers 6% 13% 28% 66176
slices 30% 57% 115% 33088

BRAMs 19% 39% 78% 328
multipliers 1% 1% 1% 328

speed [MHz] 79 78 74 –

Table I
HARDWARE RESOURCE REQUIREMENTS FOR DIFFERENT KNN-BASED

THINNING ACCELERATORS ON VIRTEX-II PRO

implemented in a Virtex-II Pro device. The second set of
experiments applies the KNN-based thinning accelerator to
a high-performance computing scenario where the core is
mapped to an XtremeData XD1000 system for speeding up
the Pareto front thinning process of the SPEA2 evolutionary
multi-objective optimizer [6].

A. Raw Speedup

In this experiment we target an AlphaData ADM-XP board
providing a Virtex-II Pro 2VP70-5 FPGA. The required hard-
ware resources for the accelerator depend on the maximum
number of vectors and the dimension. We can fit accelerator
cores for up to 128 vectors with 4 dimensions to this FPGA.
The limiting factor for implementing cores with more vectors
is the availability of logic resources. For reference, we have
also added synthesis results for a core instance with 256
vectors. Table I shows the resource requirements and the speed
as reported by Xilinx ISE 9.2i for six instances of the core. The
resources account for the accelerator core only and exclude
the OPB bus interface. The figures for 64 and 128 vectors
are post place-and-route results, results for 256 vectors are
post synthesis results reported by Xilinx XST. An interesting
observation is that the resource requirements hardly depend on
the number of dimensions. In fact, the increase in resources
for a core supporting 4 instead of 2 dimensions is less then
0.1%. Thus we have summarized the results from the 2 and 4-
dimensional versions in a single column in Table I. While the
logic resource requirements for cores with higher dimensions
are slightly increased, the BRAM requirements remain the
same. This behavior is determined by the core’s architecture,
where only the vector RAM increases linearly with higher
dimensional vectors while the distance and index RAMs are
completely independent of the dimension. In contrary, the
logic and BRAM requirements grow linearly with the number
of vectors that are supported because a distance RAM and a
sorter module is instantiated for every vector.

We have performed benchmarks for determining the raw
speedup of the accelerator core compared to the PPC pro-
cessor. To that end, the KNN-based thinning core has been
attached to the PowerPC CPU core of the Virtex-II Pro as an
OPB slave peripheral running at 40 MHz. The used software
reference implementation of the KNN-based thinning proce-
dure is based on SPEA2’s implementation. The procedure
has been rewritten to operate with fixed-point arithmetic only,
and to avoid dynamic memory allocation. These changes are

1e−06

1e−05

0.0001

0.001

0.01

0.1

1

10

16
 V

ec
to

rs
, 2

D

16
 V

ec
to

rs
, 3

D

16
 V

ec
to

rs
, 4

D

32
 V

ec
to

rs
, 2

D

32
 V

ec
to

rs
, 3

D

32
 V

ec
to

rs
, 4

D

64
 V

ec
to

rs
, 2

D

64
 V

ec
to

rs
, 3

D

64
 V

ec
to

rs
, 4

D

T
im

e
(s

)

123x

255x

373x

117x

245x

358x

113x

239x

352x

Figure 4. Performance comparison between the hardware and software
implementation of the KNN-based thinning accelerator for different numbers
of vectors and dimensions

realistic for embedded systems, where typically no floating-
point units are available and dynamic memory allocation is
avoided if possible. It has to be noted that in each iteration
of the thinning algorithm, the accelerator sorts the distance
matrix σ, while in the software implementation re-sorting is
avoided by compacting the corresponding rows of the matrix.
Consequently, the asymptotic run time complexity of the
accelerator is higher than that of the software version. The
software reference has been executed on the PPC core of the
Virtex-II Pro running at 240 MHz.

We have evaluated 9 different accelerator architectures that
are characterized by the number of vectors |P| = {16, 32, 64}
and the number of dimensions d = {2, 3, 4}. For each
architecture we have ran 500 experiments in which |P| ran-
domly generated input vectors with d dimensions have been
thinned to |P|/4 vectors. The random input vectors have been
generated by the PPC core using the rand() function of
Xilinx runtime library. Figure 4 shows the results of this
comparison. For each architecture the lower bar shows the
mean of the execution times in hardware, and the upper bar
shows the mean of the execution times in software. On top
of each bar, the speedup of the hardware execution over
the software execution is annotated. Figure 4 shows that the
accelerator achieves significant speedups of at least two orders
of magnitude over the embedded software implementation.
We also observe that for a given number of vectors the
speedup increases approximately linearly with the number of
dimensions.

B. Accelerating the SPEA2 evolutionary algorithm

To study the performance of the KNN-based thinning ac-
celerator in a high performance computing scenario, we have
integrated the accelerator core into the SPEA2 multi-objective
evolutionary optimizer [6]. As explained in Section I, SPEA2
preserves a fixed-size archive of non-dominated solutions.
When the number of non-dominated solutions created in an
iteration of the algorithm exceeds the size of the archive,

resource usage capacity
complete KNN core (EP2S180)

ALUTs 26846 19% 24513 17% 143520
Registers 17694 12% 9535 7% 143520

DSPs 8 1% 8 1% 768
Mem bits 1549728 17% 1083136 12% 9383040

M512s 38 4% 0 0% 930
M4Ks 289 38% 266 35% 768

M-RAMs 1 11% 0 0% 9

Table II
HARDWARE RESOURCE REQUIREMENTS FOR A 128 VECTORS 4D
KNN-BASED THINNING ACCELERATOR ON STRATIX-II FOR THE

COMPLETE DESIGN INCLUDING THE HYPERTRANSPORT INTERFACE AND
FOR THE KNN CORE ALONE

KNN-based thinning is used for reducing the set of solutions.
Depending on the problem that is optimized with SPEA2, the
KNN-based thinning process can consume a significant share
of the run time of SPEA2.

For this set of experiments, we have used a multi-
dimensional Knapsack problem [12], which is a synthetic
application commonly used for comparing evolutionary al-
gorithms. We have taken up on the PISA framework [13]
for integrating the Knapsack application with the SPEA2
optimizer, as the source code for this application is available
from the PISA website [14].

As target architecture, we have used an XtremeData
XD1000 system [11], which is a high-performance reconfig-
urable workstation. The XD1000 system is based on a dual-
processor capable AMD Opteron mainboard, where one CPU
socket is populated with an FPGA module. The FPGA module
implements the HyperTransport protocol which allows for
high-bandwidth and low latency communication with the 2.2
GHz Opteron CPU in the second CPU socket. The FPGA mod-
ule mounts a high-density Altera Stratix-II EP2S180 FPGA,
provides 4 MB local ZBT SRAM as well as an interface to
the DDR-400 SDRAM installed on the mainboard. The control
registers of our accelerator are made available to the Opteron
CPU as memory mapped registers. Also the vector and index
RAMs are directly mapped into the address space of the CPU.
The KNN-based thinning core is running on the Altera FPGA
at 100 MHz. Table II shows the post place-and-route resource
usage as reported by Altera Quartus Version 7.2 for a core
supporting a maximum of 128 vectors and four dimensions as
well as for the complete design including the HyperTransport
core and clock management logic.

We compare the execution times of a pure software imple-
mentation for solving the multi-dimensional Knapsack prob-
lem with SPEA2 with a hardware accelerated version of the
same algorithm. The software version uses the KNN-based
thinning procedure from an unmodified SPEA2 implemen-
tation, which is reasonably optimized and exploits efficient
data structures and algorithms. For the hardware accelerated
version, we have replaced the KNN-based thinning routine
in SPEA2 with the call to our accelerator core. The code
has been compiled with GCC 4.1.2., optimization level -O3.
The execution times have been measured with the Unix time

#vectors 128 128 128
#dimensions 2 3 4

SW HW SW HW SW HW
time [s] 15.0 4.9 32.8 5.0 20.3 5
speedup 3.1x 6.6x 4.1x

Table III
RESULTS FROM SOLVING THE MULTI-DIMENSIONAL KNAPSACK PROBLEM

USING SPEA2 ON THE XD1000

command.
For computing the resulting speedups, we compare the

execution time of the software-only implementation running
on the Opteron CPU of the XD1000 system to the execution
time of the hardware accelerated version, where the host code
runs on the Opteron CPU and the accelerator runs on the
HyperTransport-attached FPGA board. We take a conservative
approach. For the pure software version, we are considering
the user time consumed by the process only. For the hardware
accelerated version, we are adding user and system time to
also account for the data transfers between CPU and FPGA
module.

For each instance of the architecture, we have executed
10 runs with different random seeds. In each run, SPEA2
optimizes the Knapsack problem over 5000 iterations with an
archive size of 16 solutions. In each iteration, 128 individuals
are generated, i. e., in the worst case, each iteration creates
128 non-dominated solutions that must be thinned down to
16 solutions. Since we use a multi-dimensional Knapsack
problem, the number of dimensions can be easily scaled by
increasing the number of knapsacks.

Table III summarizes the results from the benchmarks. The
measured overall speedups range from 3.1x to 6.6x. In contrast
to the case-study in Sec. IV-A which showed the raw-speedup
of the accelerator architecture itself, the speedups reported
in Table III are application-level speedups for solving the
Knapsack optimization problem with the SPEA2 optimizer.

There main causes for the difference in raw-speedup and
application-level speedup are:
• The gap between the clock speed of the CPU and the

clock speed of the FPGA accelerator is increased from
6x in the embedded computing scenario to 22x in the
HPC scenario.

• The CPU and memory architecture of the XD1000 system
is significantly more advanced as the architecture of the
embedded PPC core.

Still, the results show, that the KNN accelerator can sig-
nificantly reduce the execution time for optimization solved
with the SPEA2 evolutionary stochastic optimizer. The amount
of acceleration that can be obtained is however problem
dependent.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an accelerator core for a
KNN-based thinning algorithm. We have detailed the algo-
rithm and the core’s architecture, and reported on the result
of two sets of experiments. The first set of experiments

has addressed an embedded computing scenario, where the
accelerator core is part of a larger system-on-chip mapped
to a modern platform FPGA. For this scenario, we have
demonstrated that our accelerator can achieve very high raw
speedups which, in part, has to be attributed to the relatively
slow CPU. However, such an embedded system setup is
realistic in scenarios where multi-objective optimizers such
as SPEA2 have to be run on resource-limited systems. This is
in line with recent research that has promoted system-on-chip
versions of multi-objective optimizers to create self-optimizing
autonomous systems [15][16]. Such approaches will strongly
benefit from the accelerator presented in this paper.

The second set of experiments has targeted a high perfor-
mance computing scenario, where the accelerator core has
been mapped to a cutting-edge reconfigurable workstation. We
have shown that our core is portable and has the potential to
significantly accelerate SPEA2, even when compared to a soft-
ware reference running on a state-of-the-art CPU. Although
the accelerator core on the XD1000 system is clocked more
than twice as fast as on the embedded system, the resulting
speedups are lower which is mainly due to the much faster
clock speed of the CPU. Multi-objective evolutionary algo-
rithms are rather general optimization tools that are applied
to many hard problems, especially in science and engineering,
for example in automated design-space exploration [17]. Since
such optimization problems often show very long run times,
an accelerator core delivering a speedup of one order of
magnitude with a standard workstation setup such as the
XD1000 system is significant.

As future work, we will study how to improve the architec-
ture such that the distance RAMs need to be sorted only once.
This improvement will enable our architecture to match the
asymptotic complexity of the software implementation. Also,
we are planning to port the KNN-based thinning accelerator
to our recently developed IMORC core interconnection infras-
tructure [18]. This will allow us to collect execution statistics
of the core that can be used for performance tuning.

VI. ACKNOWLEDGEMENTS

This work was supported by the German Research Foun-
dation under project number PL 471/1-2 within the priority
program Organic Computing and by the Altera-AMD-Sun-
XtremeData university program.

REFERENCES

[1] D. Loftsgarden and C. Quesenberry, “A Nonparametric Estimate of a
Multivariate Density Function,” The Annals of Mathematical Statistics,
vol. 31, pp. 1049–1051, 1965.

[2] B. W. Silverman, Density Estimation for Statistics and Data Analysis.
Chapman & Hall/CRC, April 1986.

[3] T. Cover and P. Hart, “Nearest Neighbor Pattern Classification,” IEEE
Transactions on Information Theory, vol. 13, pp. 21–27, 1967.

[4] F. Bajramovic, F. Mattern, N. Butko, and J. Denzler, “A Comparison of
Nearest Neighbor Search Algorithms for Generic Object Recognition,”
in Proceedings of Advanced Concepts for Intelligent Vision Systems
(ACIVS). Springer, 2006, pp. 1186–1197.

[5] J. Sanchez, J. Sotoca, and F. Pla, “Efficient Nearest Neighbor Classifica-
tion with Data Reduction and Fast Search Algorithms,” in Proceedings
of the IEEE International Conference on Systems, Man and Cybernetis.
IEEE, 204, pp. 4757–4762.

[6] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization,”
in Evolutionary Methods for Design, Optimisation and Control with
Application to Industrial Problems (EUROGEN 2001). International
Center for Numerical Methods in Engineering (CIMNE), 2002, pp. 95–
100.

[7] Y.-J. Yeh, H.-Y. Li, W.-J. Hwang, and C.-Y. Fang, “FPGA implementa-
tion of kNN classifier based on wavelet transform and partial distance
search,” in Proc. Scandinavian Conf. on Image Analysis (SCIA), ser.
LNCS, no. 4522. Springer-Verlag, 2007, pp. 512–521.

[8] R. Chikhi, S. Derrien, A. Noumsi, and P. Quinton, “Combining flash
memory and FPGAs to efficiently implement a massively parallel
algorithm for content-based image retrival,” in Proc. Int. Workshop on
Reconfigurable Computing: Architectures, Tools and Applications, ser.
LNCS, no. 4419, 2007, pp. 247–258.

[9] T. Saegusa and T. Maruyama, “An FPGA implementation of k-means
clustering for color images based on Kd-tree,” Proc. Int. Conf. on Field
Programmable Logic and Applications (FPL), pp. 1–6, August 2006.

[10] K. Claessen, M. Sheeran, and S. Singh, “The design and verification of
a sorter core,” in Correct Hardware Design and Verification Methods,
ser. Lecture Notes in Computer Science, no. 2411. Springer-Verlag,
2001, pp. 355–368.

[11] XD1000 Development System, XtremeData, Inc., Schaumburg, IL, USA,
2008. [Online]. Available: www.xtremedatainc.com

[12] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength pareto approach,” IEEE Trans.
on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[13] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA — a
platform and programming language independent interface for search
algorithms,” in Evolutionary Multi-Criterion Optimization (EMO), ser.
LNCS. Berlin: Springer-Verlag, 2003, pp. 494–508.

[14] [Online]. Available: http://www.tik.ee.ethz.ch/sop/pisa/
[15] P. Kaufmann and M. Platzner, “Toward Self-adaptive Embedded Sys-

tems: Multiobjective Hardware Evolution,” in Proceedings of the 20th
International Conference on Architecture of Computing Systems (ARCS),
ser. LNCS, vol. 4415. Springer, 2007.

[16] ——, “Multi-objective Intrinsic Hardware Evolution,” in Proceedings of
the MAPLD Internional Conference, 2006.

[17] M. Palesi and T. Givargis, “Multi-objective design space exploration
using genetic algorithms,” in Proc. Int. Symp. on Hardware/Software
Codesign (CODES). New York, NY, USA: ACM Press, 2002, pp.
67–72.

[18] T. Schumacher, C. Plessl, and M. Platzner, “IMORC: an infrastruc-
ture for performance monitoring and optimization of reconfigurable
computers,” Many-core and Reconfigurable Supercomputing Conference
(MRSC) (poster), April 2008.

