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The cube cut problem refers to determining the minimum number of hyperplanes that slice all
edges of the d-dimensional hypercube. While these numbers are known for d ≤ 6, the exact
numbers for d > 6 are as yet undetermined. The cube cut algorithm is able to compute these
numbers, but is computationally extremely demanding. We accelerate the most time-consuming
part of the cube cut algorithm using a modern compute cluster equipped with FPGAs. One hy-
brid CPU/FPGA node achieves a speedup of 27 over a CPU-only node; a 4-node hybrid cluster
accelerates the problem by a factor of 105 over a single CPU. Moreover, our accelerator is
developed using a structured, model-based approach for dimensioning the hardware implemen-
tation and analyzing different design points.

1 Introduction

The d-dimensional hypercube consists of 2d nodes connected by d×2d−1 edges. A promi-
nent and still unsolved problem in Geometry is to determine C(d), the minimal number
of hyperplanes that slice all edges of the d-dimensional hypercube. An upper bound for
C(d) is given by d. This is achieved, for example, by the d hyperplanes through the ori-
gin and normal to the unit vectors. For d ≤ 4, it has been known that at minimum these
d hyperplanes are required. For d = 5, it was shown only a few years ago that actually
five hyperplanes are required1. Surprisingly, several sets of only 5 hyperplanes have been
found that slice all edges of the 6-dimensional hypercube.

The cube cut problem relates to the question of linear separability of vertex sets in a
d-hypercube. Linear separability plays also a central role in the areas of threshold logic2,
integer linear programming3 and perceptron learning4. In threshold logic, a threshold
function f of d binary variables is defined as f(x1, x2, . . . , xd) = {1 : iff

∑d
i=1 wixi ≥

T ; 0 : iff
∑d

i=1 wixi < T}, with wi, T ∈ R. The input variables span an d-hypercube and
f separates input variables (vertices) mapped to 0 from vertices mapped to 1 by a linear
cut through the d-hypercube. Here, for example, it has been shown that C(d) is the lower
bound for the size of a threshold circuit for the parity function2.

In the past, much work was done for finding C(d)5–7. On one hand, scientists approach
this problem analytically and try to find a mathematical proof for this number. While an
analytical solution would be extremely desirable, such a proof seems to be very hard to
obtain. On the other hand, the problem can be approached computationally by evaluating
all possible slices of the d-dimensional hypercube using exhaustive search. While the
computational method lacks the mathematical strength of a formal proof, it has indeed
brought remarkable success during the last years1, 8.

The complexity of computing all possible slices for higher dimensions leads to very
long runtimes. The main contribution of this paper is the acceleration of the most runtime-
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intense part of the cube cut algorithm by a high-performance compute cluster utilizing
FPGAs. A second contribution is the use of an architecture and application model that
helps us to structure the implementation of the FPGA accelerator for maximum efficiency.
Section 2 gives an overview of the cube cut problem and the algorithm used to solve it. In
Section 3, we introduce the basics of the FPGA accelerator modeling. The implementation
decisions we have taken based on information gathered from the model are detailed step-
by-step in Section 4. This section also presents performance data and compares them to a
software-only implementation on the same compute cluster. Finally, Section 5 concludes
the paper and presents an outlook into future work.

2 The Cube Cut Algorithm

The main idea of the computational solution to the cube cut problem is to generate all
possible hyperplanes that slice some of the edges of the d-dimensional hypercube. Because
the d-dimensional hypercube contains n = d× 2d−1 edges, such a cut can be described by
a string of n bits. Each bit position in that string corresponds to a specific edge and is set
to 0 when the edge is not sliced by a cut and to 1 when the edge is sliced, respectively. For
example, for d = 2 a cut is described by a string of 4 bits where ({1010}, {0101}) forms
a minimal set of hyperplanes cutting all edges.

The cube cut algorithm consists of three phases. First, all possible cuts for a specific
d are generated. This results in a huge list of bit strings. Second, this list is reduced by a
technique described below. Third, the remaining set of bit strings is searched for a subset
of bit strings that represents a set of cuts slicing all edges of the d-dimensional hypercube.
This is achieved by identifying a minimum set of bit strings b0, b1, . . . , bC(d)−1 where
each of the n bits is set in at least one of the strings. Since the number of possible cuts
grows rapidly with d, searching the full set of bit strings for a minimum number of cuts
is practically impossible. Hence the reduction of the list of bit strings in phase two is of
utmost importance to reduce the complexity for phase three. The reduction technique is
based on the property of dominance.

Consider a cut c1 that slices the edges E = {e0, e1, . . . , ek−1} and another cut c2 that
slices all edges in E plus some additional ones. Obviously, cut c1 can be discarded since
we know that another cut exists that already slices all edges in E. We say that c2 dominates
c1. Formally:

b dominates a⇔ ∀i : (¬ai ∨ bi) = 1; i = 0, ..., n− 1 (1)

From the complete set of bit strings we can typically discard a large number of cuts
that are being dominated. Rather than checking all pairs of bit strings for dominance, we
employ the following algorithm: First, we generate two separate lists A and B from the
initial list of possible cuts. B is initialized with all bit strings that slice a maximal number
of edges. Note that these bit strings can not be dominated. Assume that every element of B
contains exactly kmax ones. A is initialized with all bit strings containing exactly kmax−1
ones. Every element in A is then compared to the elements in B. The elements of A that
are dominated by an element of B are discarded. After this step, the remaining elements
of A are known to be non-dominated by any of the remaining elements of the initial list as
the latter contain fewer ones and therefore slice fewer edges. The remaining elements of
A are thus added to the set B. Then, a new set A is created containing all elements with
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kmax − 2 ones and checked against B, and so on. The algorithm runs until all elements of
the original list have been checked for dominance. The result of this algorithm is a reduced
list of bit strings where all irrelevant cuts have been discarded.

Although phase two of the cube cut algorithm consists of rather simple bit operations
on bit strings, it shows a very high runtime in software. This is mainly due to the fact that
the required bit operations and the lengths of the bit strings do not match the instructions
and operand widths of commodity CPUs. FPGAs on the other hand can be configured for
directly operating on a complete bit string at once and hence exploit the high potential of
fine-grained parallelism. Moreover, provided sufficient hardware area is available, many of
these operations can be done in parallel with rather small overhead. An FPGA implemen-
tation can therefore also leverage both the fine- and coarse-grained parallelisms inherent
in phase two of the cube cut algorithm. We have implemented that phase of the cube cut
algorithm in hardware and mapped it to an FPGA (see Section 4).

3 Modeling FPGA Accelerators

Many common modeling and analysis techniques for parallel algorithms, e.g., PRAM,
describe algorithms by simple operations and express the execution times by counting the
number of such operations performed. While these models are of great importance from
a theoretical point of view, their usefulness is often also rather limited when it comes to
implementations on real parallel machines. The major problem with these models is that
they consider only the time spent for performing calculations and do not regard the time
spent for data accesses, i.e., memory and I/O.
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Figure 1. Modification of the LDA
model

To overcome this limitation, the LDA (latency-of-
data-accesses) model9 was created previously. The LDA
technique actually subsumes an architecture model, an ex-
ecution model, and an execution time analysis. The archi-
tecture model defines the various properties of the target
architecture, especially the available memory hierarchies
together with their latency and bandwidth parameters. The
execution model describes algorithms in terms of LDA op-
erations. LDA operations are classes of original machine
instructions that can be characterized by common laten-
cies. For memory accesses, the model differentiates be-
tween accesses to L1-/L2-cache, main memory, or several levels of remote memory. Tasks
are the basic units of computation. A task consists of an input phase (synchronize with
and receive inputs from preceding tasks), an execution phase (computation and memory
access), and an output phase (synchronize with and send output to subsequent tasks). The
three phases are executed in sequence as shown in Figure 1. Control flow is modeled by
connecting several tasks. The LDA model is not cycle-accurate but aims at providing a
means to analyze different application mappings on parallel architectures and to estimate
their performance either analytically or by simulation. Simulators have been developed
atop the LDA model and used successfully to investigate applications on SMP machines10.

While the LDA model takes communication into account, it is not well-suited for mod-
eling FPGA accelerators. This is for a number of reasons. First, FPGA cores can utilize the
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unique capabilities of programmable hardware in many different ways. Besides exploiting
huge amounts of fine-grained parallelism at the bit-level, custom cores can also employ
SIMD style parallelism, pipelining and systolic execution modes. The execution phase of
such a core is not at all sequential, as the LDA model assumes. Especially when the exe-
cution phase is interleaved with load and store phases, the LDA model with its sequential
input–execute–output semantics is not applicable. However, one feature of the LDA model
that we think transfers well to FPGA accelerators is its support of data accesses with differ-
ent latencies. This is relevant to FPGA designs as data accesses can target anything from
distributed RAM over BlockRAM and off-chip SRAM and DRAM to memories connected
over I/O busses.

We therefore work on an LDA-based modeling technique for FPGA accelerators.
While we retain LDA’s three-phase structure, we allow for overlapping phases and con-
sider the fine-grained parallelism of hardware. Figure 1 shows the main difference between
our model and LDA. In our model, the input, execution, and output phases may occur in
parallel with arbitrary time offsets. All phases are characterized by their bandwidth, while
the architecture nodes implemented on the FPGA also possess an area parameter. While
the bandwidth of a communication phase is dependent on architecture parameters like bus
width or clock frequency, the bandwidth of an execution phase depends on a larger set of
design parameters. For example, the designer can vary pipeline depth, pipeline width, and
the delay of one pipeline stage, all of which have direct impact on the area requirements,
the attainable clock frequency and the required I/O bandwidth.

In the work presented in this paper, we use the LDA-based model to describe and reason
about different design options for an FPGA core accelerating the cube cut algorithm.

4 Implementation and Results

4.1 Target platform

The implementation of our cube cut algorithm is targeting the Arminius compute cluster
provided by the Paderborn Center for Parallel Computing11. This cluster consists of 200
compute nodes, each one equipped with two Xeon processors running at 3.2 GHz and
using 4 GB of main memory. The nodes are connected by a 1 Gbit/s Ethernet and an
additional 10 Gbit/s Infiniband network for high speed communication.

Additionally, four nodes of the cluster are equipped with an AlphaData ADM-XP
FPGA board12. The user FPGA of this board, a Xilinx XC2VP70-5, is connected to the
host system by a PCI 64/66 bridge implemented in an additional Virtex-II FPGA. This
bridge provides a rather simple 64bit wide multiplexed address/databus to the user FPGA,
called localbus. The user FPGA can be clocked from 33 to 80 MHz, and data can be
transfered using direct slave cycles or by DMA transfers. Two DMA channels are avail-
able which can operate in different modes. For our application, the most useful DMA
mode is the demand mode which is optimized for connecting to a FIFO. In this mode, the
DMA channels block the host application running on the CPU until the FIFOs are ready
for data transfers. By experimenting with micro benchmarks we were able to determine a
bidirectional bandwidth of 230 MB/s using demand mode DMA.

A sketch of the architecture model for our node setup is shown in Figure 2. The al-
gorithm kernel that is to be accelerated on the FPGA is logically located between the two
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Figure 2. Architecture model

FIFOs (one for input, one for output). These FIFOs in turn connect to the DMA controller
and are also used to convert between bit widths and clock frequencies that might be dif-
ferent on the PCI bus and the user FPGA. Figure 2 shows an example where the DMA
channels transmitting data over the PCI bus form a bottleneck. In our model, the DMA
channels and the FIFOs are responsible for data transfers and do not have any internal
execution phase.

4.2 FPGA core for checking dominance

The central element of the algorithm outlined in Section 2 is the comparison of two bit
strings for dominance. A dominance comparator takes as inputs two n-bit strings a and
b from lists A and B, respectively. It checks every bit of a against the corresponding bit
of b to detect a possible dominance, according to Equation 1. We rely on an optimized
design that makes efficient use of the LUTs and the carry logic offered by FPGAs. The
design mapped to Xilinx Virtex-II Pro technology in shown in Figure 3(a). Every 4-input
LUT checks two bits of the input strings a and b for dominance, e.g., dom = (¬a0 ∨ b0)∧
(¬a1 ∨ b1). As a result, dom is one when this part of b dominates the appropriate part of
a. All the LUTs required for a comparator of given bit string length n are connected to a
n-input AND gate formed by the slice’s carry logic, driven by a multiplexer (MUXCY).
The output of this multiplexer cout is tied to constant zero when dom = 0, and to the value
of cin else. The first cin of this chain is tied to a constant one; the last cout is the result
of the complete dominance check. This approach follows the design pattern for wide logic
gates13 and modifies it to include the dominance check.

In the following, we focus on an FPGA accelerator for d = 6 which results in bit strings
of length n = d × 2d−1 = 192 bit. On our target device, an XC2VP70-5, a comparator
for this length consumes 0.77 % of the FPGA’s logic resources and can be clocked at a
maximum of 66 MHz. Using the design of Figure 3(a), one pair of bit strings can be
checked for dominance in just one clock cycle. Under the assumption that an element from
list B has already been loaded into the FPGA, the comparator design needs to read one
element from list A per cycle. In the worst case no a ∈ A is dominated by any of the
elements of B. Then, the comparator will also output one element per cycle. The required
combined input and output bandwidth of the single comparator for n = 192 is therefore:

bandwidthreq = 192 bit× 66 MHz× 2 = 3168
MB
s

However, the available bandwidth for the input and output channels of the DMA con-
troller is only 230 MB/s – roughly 1

14 of the combined data bandwidth requested by the
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Figure 3. Dominance-check core architecture

comparator design. Such an FPGA accelerator would be perform poorly as the DMA band-
width over the PCI bus forms a severe performance bottleneck. This situation is reflected
by the model shown in Figure 2. Moreover, the single comparator design utilizes only
0.77 % of the available FPGA area which is rather unsatisfying.

In order to reduce the comparator’s bandwidth requirements until it matches the DMA
channels’ bandwidth, we modified the design such that m elements of the list B are stored
on the FPGA. When the element a is not dominated by any of the stored elements b, the
comparator will need a new input value and write a new output value only every m-th cy-
cle. To increase the FPGA utilization, we have two options. First, we could instantiate l
comparator circuits onto the FPGA that operate in parallel. This would, however, again
increase the necessary bandwidth by the factor l. The second option is to arrange p com-
parators in a pipelining fashion. Each stage of the pipeline stores m elements of the list B
and compares them with an element a. Then, the element a proceeds to the next pipeline
stage where it is compared to the next bunch of m elements of B. As soon as an element a
is found to be dominated, it is invalidated. While such an element continues to run through
the pipeline as a ”bubble” for the reason of keeping all pipeline stages synchronized, the
output FIFO will not accept this element. The resulting design for m = 4 is shown in
Figure 3(b).

We easily conclude that given the 0.77 % area utilization of one comparator, we could
fit 130 comparators on the FPGA. Considering that we have to assign m = 16 elements
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of B to each comparator stage to reduce the bandwidth to 192 bit×66 MHz×2
16 = 198 MB

s ,
we can still map 100 comparator stages to the target device. As a result, every element
a sent to the FPGA is compared to at most 1600 elements b. At a clock rate of 66 MHz
and assuming that the pipeline is completely filled with valid elements a, we achieve a
performance of roughly 1011 bit string comparisons per second.

4.3 The host application

The software part of the cube cut algorithm, phase two, consists of feeding the FPGA with
proper lists A and B and waiting for results to be read back. The host application consists
of two threads, a sender and a receiver, that perform these tasks. The sender loads the
b’s into the comparators’ memories and streams the a’s through the pipeline, while the
receiver simply waits for bit strings that were not dominated and writes the values back
into a buffer. The buffers for a’s and the results are then swapped, new b’s are loaded, and
the threads proceed as before.

We have also parallelized the host application by distributing the list A over different
compute nodes such that only a fraction of the overall comparisons needs to be performed
on one node. Since the Arminius cluster consists of homogenous compute nodes, we can
expect every FPGA and CPU to perform a nearly equal number of comparisons per second.
Consequently, a straight-forward static load balancing is sufficient to map the application
onto the cluster. Portability was achieved by using MPI to implement the parallelized
version.

4.4 Results

To verify the design presented in Section 4 and determine its performance, we conducted
tests with real data generated by the cube cut algorithm. The dataset used consisted of
409′685 bit strings containing 148−160 ones (list B) and 5′339′385 strings containing 147
ones (list A). Figure 4 shows the resulting runtime. Using one CPU, the software solution
finishes after 2736 seconds, while the FPGA takes only 99 seconds. Parallelizing the
computations shows the expected nearly linear speedup. A four-node CPU configuration
takes 710 seconds, while the same configuration equipped with FPGAs finishes after 26
seconds. To summarize, one hybrid CPU/FPGA node achieves a speedup of 27 over a
CPU-only node; a 4-node hybrid cluster is faster by a factor of 105 over a single CPU.
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5 Conclusion and Future Work

In this paper we presented an FPGA accelerator that achieves impressive speedups for the
most runtime-intense part of the cube cut algorithm. We supported the design process by
modeling the architecture and the application. Although the considered application led to a
straight-forward accelerator design, the model proved to be very useful for analyzing per-
formance bottlenecks and comparing design alternatives at an early design phase. Further,
the model will be invaluable for optimizing the accelerator to different target platforms.
We would like to know, for example, what performance we can expect by using a larger
FPGA, a faster FPGA, improved DMA controllers, a faster I/O bus, etc.

We synthesized our accelerator design to one of the largest Xilinx FPGAs currently
available, the Virtex5 LX330. On that device, we would be able to enlarge the compara-
tor chain to about 400 comparators running at about 116 MHz. This would increase our
speedup by a factor of eight in the best case. Basically, our accelerator is described by
the parameters (n, l, p, m), the length of the bit string, the number of parallel pipelines,
the numbers of stages per pipeline, and the number of comparisons per pipeline stage.
Depending on the speed of the design and the bandwidth of the DMA controllers and the
FIFOs, our model allows us to determine the best settings for these parameters.

We believe that creating models of the architecture and the application can greatly
facilitate performance estimation and optimization. We have to investigate, however, to
what extent the experience with the model for the cube cut problem can be generalized.

Future work on accelerating the cube cut algorithm will focus on the algorithm’s third
phase. The final composition of the remaining cuts to a minimal set of cuts slicing all edges
might be another interesting candidate for FPGA acceleration. Further, we will evaluate
the scalability of our design by porting it to different FPGA accelerator boards providing
denser FPGAs and an improved transfer bandwidth.
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