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Abstract. The evolvable hardware paradigm facilitates the construc-
tion of autonomous systems that can adapt to environmental changes
and degrading effects in the computational resources. Extending these
scenarios, we study the capability of evolvable hardware classifiers to
adapt to intentional run-time fluctuations in the available resources, i.e.,
chip area, in this work. To that end, we leverage the Functional Unit
Row (FUR) architecture, a coarse-grained reconfigurable classifier, and
apply it to two medical benchmarks, the Pima and Thyroid data sets
from the UCI Machine Learning Repository. We show that FUR’s clas-
sification performance remains high during changes of the utilized chip
area and that performance drops are quickly compensated for. Addition-
ally, we demonstrate that FUR’s recovery capability benefits from extra
resources.

1 Introduction

Evolvable hardware (EHW) denotes the combination of evolutionary algorithms
with reconfigurable hardware technology to construct self-adaptive and self-
optimizing hardware systems. The term evolvable hardware was coined by de
Garis [1] and Higuchi [2] in 1993.

While the majority of EHW related work focus on the evolution of functional
correct circuits or circuits with a high functional quality, some authors investi-
gates the robustness of EHW. The related literature spans this area from offline
evolution of fault-tolerant circuits able to withstand defects in silicon [3] without
increasing circuit’s size significantly [4] or compensating supply voltage drifts [5]
by recurrent re-evolution after a series of deteriorating events as the wide-band
temperature changes or radiation beams treatments [6,7].

Evolvable hardware has a variety of applications, one of which are classifier
systems. A number of studies report on the use of EHW for classification ap-
plications such as character recognition [8], prosthetic hand control [9], sonar



return classification [10,11], and face image recognition [10]. These studies have
demonstrated that EHW classifiers can outperform traditional classifiers such
as artificial neural networks (ANNs) in terms of classification accuracy. For the
electromyographic (EMG) signal classification, it has been showed that EHW ap-
proaches can perform close to the modern state-of-the-art classification methods
such as support vector machines (SVMs) [9] .

In this work we focus on robust EHW-based classifiers. The novelty is that
we investigate classifier systems able to cope with changing resources at run-
time and evaluate their classification performance while changing the size of the
utilized chip area. To this end, we leverage the Functional Unit Row (FUR) archi-
tecture, a scalable and run-time reconfigurable classifier architecture introduced
by Glette et al. [12]. During optimization, we increase and decrease the number
of pattern matching elements included in FUR and study the development of
the resulting classification accuracy and, specifically, the recovery capability of
FUR.

In contrast to most previous work that studies self-adaptation in response to
stimuli from outside the system, we explicitly build our analysis on the assump-
tion of resource competition between different tasks run inside an adaptable
system.

The paper is structured as follows: Section 2 presents the FUR architecture
for classification tasks, its reconfigurable variant and the applied evolutionary
optimization method. Benchmarks together with an overfitting analysis as well as
the experiments with the reconfigurable FUR architecture are shown in Section 3.
Section 4 concludes the paper and gives an outlook on future work.

2 The Reconfigurable Functional Unit Row Architecture

The Functional Unit Row (FUR) architecture for classification tasks was first
presented by Glette in [12]. It is an architecture tailored to online evolution
combined with fast reconfiguration. To facilitate online evolution, the classifier
architecture is implemented as a circuit whose behavior and connections can
be controlled through configuration registers, similar to the approach of Sekan-
ina [7]. By writing the genome bitstream produced by a GA to these registers,
one obtains the phenotype circuit which can then be evaluated. In [13], it was
shown that the partial reconfiguration capabilities of FPGAs can be used to
change the architecture’s footprint. The amenability of FUR to partial reconfig-
uration is an important precondition for our work. In the following, we present
the organization of the FUR architecture, the principle of the reconfigurable
FUR architecture, and the applied evolutionary technique. For details about the
implementation of FUR we refer to [12].

2.1 Organization of the FUR Architecture

Fig. 1 shows the overall organization of the FUR architecture. The FUR archi-
tecture is rather generic and can be used together with different basic pattern
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Fig. 1: The Functional Unit Row (FUR) Architecture is hierarchically partitioned
for every category into Category Detection Modules (CDMs). For an input vec-
tor, a CDM calculates the likeliness for a previously trained category by summing
up positive answers from basic pattern matching elements: the Category Classi-
fiers (CCs). The CDM with most activated CCs defines the FUR’s decision.

matching primitives [9,10]. It combines multiple pattern matching elements into
a single module with graded output detecting one specific category. A majority
voter decides for a specific category by identifying the module with the highest
number of activated pattern matching elements. More specifically, for C cate-
gories the FUR architecture consists of C Category Detection Modules (CDMs).
A majority vote on the outputs of the CDMs defines the FUR architecture deci-
sion. In case of a tie, the CDM with the lower index wins. Each CDM contains
M Category Classifiers (CCs), basic pattern matching elements evolved from
different randomly initialized configurations and trained to detect CDM’s cate-
gory. A CDM counts the number of activated CCs for a given input vector, thus
the CDM output varies between 0 and M .
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Fig. 2: Category Classifier (CC): n Functional Units (FUs) are connected to an
n-input AND gate. Multiple CCs with a subsequent counter for activated CCs
define a CDM.

The architecture becomes specific with the implementation of the CCs. In
our case we define a single CC as a row of Functional Units (FUs), shown in
Fig. 2. The FU outputs are connected to an AND gate such that in order for a
CC to be activated all FU outputs have to be 1. Each FU row is evolved from



an initial random bitstream, which ensures a variation in the evolved CCs. The
number of FU rows defines the resolution of the corresponding CDM.
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Fig. 3: Functional Unit (FU): The data MUX selects which of the input data to
feed to the functions “>” and “≤”. The constant c is given by the configuration
lines. Finally, a result MUX selects which of the function results to output.

The FUs are reconfigurable by writing the architecture’s register elements.
As depicted in Fig. 3, each FU behavior is controlled by configuration lines
connected to the configuration registers. Each FU has all input bits to the system
available at its inputs, but only one data element (e.g., one byte) is selected.
This data is then fed to the available functions. While any number and type of
functions could be imagined, Fig. 3 illustrates only two functions for clarity. In
addition, the unit is configured with a constant value, c. This value and the input
data element are used by the function to compute the output of the unit. Based
on the data elements of the input, the functions available to the FU elements
are greater than and less than or equal. Through experiments these functions
have shown to work well, and intuitively this allows for discriminating signals
by looking at the different amplitudes.
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Fig. 4: Reconfigurable Functional Unit Row Architecture: The FUR architecture
is configured by the number of categories, FU rows and FUs per FU row. In our
work we fix the number of categories and FUs per FU rows while changing the
number of FU rows per CDM.



2.2 Reconfigurable FUR Architecture

The notion of Evolvable Hardware bases on circuit optimization and reconfigura-
tion. EHW-type adaptable systems improve their behavior in response to system
internal and external stimuli, offering an alternative to classically engineered
adaptable systems. While the adaptation to environmental changes represents
the main research line within the EHW community, the ability to balance re-
sources dynamically between multiple concurrent applications is still a rather
unexplored topic. One the one hand, an EHW module might run as one out of
several applications sharing a system’s restricted reconfigurable resources. De-
pending on the current requirements, the system might decide to switch between
multiple applications or run them concurrently, albeit with reduced logic foot-
prints and reduced performance. We are interested in scalable EHW modules and
architectures that can cope with such changing resource profiles. On the other
hand, the ability to deal with fluctuating resources can be used to support the
optimization process, for example by assigning more resources when the speed
of adaptation is crucial.

The FUR architecture precisely fits this requirement as its structure can be
changed (disregarding the register-reconfigurable FUs) along three dimensions,
namely the number of

– categories,

– FU rows in a category, and

– FUs in a FU row.

In this work we assume the numbers of categories and FUs in a FU row as
constants reconfiguring the number of FU rows in a CDM. This is illustrated
in Fig. 4. For a sequence I = {i1, i2, . . . , ik} we evolve a FUR architecture
having i1 FUs per CDM, then switching to i2 FUs per CDM and re-evolving the
architecture without flushing the configuration evolved so far. The key insights
we want to gain by this investigation are the sensitivity of the FUR architecture
measured in the classification accuracy to changes in the resources and the time
for re-establishing near asymptotic accuracy quality.

2.3 Evolution of FUR Architecture

To evolve a FUR classifier we employ a 1 + 4 ES scheme. In contrast to previous
work [12], we do not use incremental evolution evolving CDMs and FU rows
separately but evolve the complete FUR architecture in a single ES run. The
mutation operator is configured to mutate three genes in every FU row.

In preparation to the experiments on the reconfigurable FUR architecture
we investigate FUR’s general performance by evaluating it on a set of useful
FU rows per CDM and FUs per FU row configurations. The performance is
calculated by a 12-fold Cross Validation (CV) scheme.



3 Experiments and Results

In this section we present two kinds of results. Initially, we analyze FURs behav-
ior by successively testing a range of parameter combinations. Combined with
an overfitting analysis we are then able to picture FUR’s complete behavior for
a given benchmark. Afterwards, we select a good-performing configuration to
investigate FUR’s performance, when being reconfigured during run-time. For
this experiment we define multiple FUR architecture configurations with varying
number of FU rows and plot the accuracy development, when switching between
the configurations.

3.1 Benchmarks

For our investigations we rely on the UCI machine learning repository [14] and
specifically, on the Pima and the Thyroid benchmarks. Pima, or the Pima Indi-
ans Diabetes data set is collected by the John Hopkins University in Baltimore,
MD, USA and consists of 768 samples with eight feature values each, divided
into a class of 500 samples representing negative tested individuals and a class
of 268 samples representing positive tested individuals.

The data of the Thyroid benchmark represents samples of regular individu-
als and individuals suffering hypo- and hyperthyroidism. Thus, the samples are
divided into 6.666, 166 and 368 samples representing regular, subnormal and
hyper-function individuals. A sample consists of 22 feature values.

The Pima and the Thyroid benchmarks don’t rely on high classification
speeds of EHW hardware classifiers, however, these benchmarks have been se-
lected because of their pronounced effects in the run-time reconfiguration exper-
iment revealing FUR’s characteristics.

3.2 Accuracy and Overfitting Analyses

We implement FUR’s parameter analysis by a grid search over the number of FU
rows and number of FUs. For a single (i, j)-tuple, where i denotes the number
of FU rows and j the number of FUs, we evolve a FUR classifier by running the
evolutionary algorithm for 100.000 generations. As we employ a 12-fold cross val-
idation scheme, the evolution is repeated 12 times while alternating the training
and test data sets. During the evolution we log for every increase in the train-
ing accuracy FUR’s performance on the test data set. The test accuracies are
not used while the evolution runs. To detect the test accuracy where the FUR
architecture starts to approximate the training set tightly and to contemporary
lose its ability to generalize, we average the test accuracies logged during the
evolutionary runs and select the termination training accuracy according to the
highest average test accuracy. This is shown in Fig. 5 for the Pima benchmark
and the (30, 8) configuration. The test accuracy, drawn along the y-axis, rises
in relation to the training accuracy, drawn along the x-axis, until the training



 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95

te
st

 a
cc

u
ra

cy

training accuracy

Pima (30,8): training vs. test accuracy

Fig. 5: Overfitting analysis: In this example the test and training accuracies
would be roughly 0.76 and 0.76, respectively.

accuracy reaches 0.76. After this point the test accuracy degrades gradually. Con-
sequently, we note 0.76 and 0.76 as the best combination of test and termination
training accuracies.

To cover the interesting parameter areas and keep the computational effort
low we evaluate the Pima and Thyroid benchmarks for 2, 4, 6, . . . , 20 FUs per
FU row and for 2, 4, 6, 8, 10, 14, 16, 20, 25, 30, 35, 40, 50, 60, 70, 80 FU rows. Fig. 6
shows the results for both benchmarks. In the horizontal level the diagrams span
the parameter area of FU rows and FUs. The accuracy for each parameter tuple
is drawn along the z-axis with a projection of equipotential accuracy lines on the
horizontal level. While the test accuracies for the Pima benchmark, presented
in Fig. 6(a) are largely independent from the number of FUs and FU rows with
small islands of improved behavior around the (8, 8 − 10) configurations, the
Thyroid benchmark presented in Fig. 6(c) has an performance loss in regions
with a large number of FUs and few FU rows.

Tables 1 and 2 compare FUR’s results for the Pima and the Thyroid bench-
marks to related work. Additionally, we use the data mining tool RapidMiner [15]
to create numbers for standard and state-of-the-art algorithms and their mod-
ern implementations. To this, we evaluate in a 12-fold cross validation manner
the algorithms: Decision Trees (DTs), k-th Nearest Neighbor (kNN), Multi-layer
Perceptrons (MLPs), Linear Discriminant Analysis (LDA), Support Vector Ma-
chines (SVMs) and Classification and Regression Trees (CART). For the Pima
benchmark our architecture outperforms any other method. It forms together
with SVMs, LDA, Shared Kernel Models and kNNs a group of best performing
algorithms within a 3% margin. The accuracy range of the Thyroid-benchmark
is much smaller because of the irregular category data size proportions and a
single dominant category amounting for 92.5% of the data. In this benchmark
our architecture lies 0.66% behind the best algorithm.
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Fig. 6: Pima and Thyroid overfitting analysis: Best generalization and the accord-
ing termination training accuracies for the Pima (a) (b) and the Thyroid (c) (d)
benchmarks, respectively.

3.3 Reconfigurable FUR Architecture Results

In our second experiment we investigate the question of FUR classification be-
havior under changes in the available resources while being under optimization.
We execute for both benchmarks a single experiment where we configure a FUR
architecture with 4 FUs per FU row and change the number of FUs every 40.000
generations. We split the data set into disjoint training and test sets analog to
the previously used 12-fold cross validation scheme and start the training of
the FUR classifier with 40 FU rows. Then, we gradually change the number of
employed FU rows to 38, 20, 4, 3, 2, 1, 20, 30, 40 executing altogether 400.000
generations. Fig. 7 shows the results for the Pima benchmark. We observe the
following:

– The training accuracy drops significantly for almost any positive and nega-
tive change in the number of FU rows and recovers subsequently.

– While the asymptotic training accuracy is lower when using only few FU
rows, the test accuracy tends to reach for any FU row configuration the usual
accuracy rate. This behavior is visible from generation 120.000 to 280.000 in
Fig. 7 and is confirmed by previous results showed in Fig. 6 (a).

– The recovery rate of the test accuracy depends on the amount of FU rows.
While for periods with few FU rows the recovery rate is slow, for periods
with 20 and more FU rows the evolutionary process manages to recover the
test accuracy much faster. Interestingly, the rise of the training accuracy for
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Fig. 7: The Reconfigurable Pima benchmark: Changing classifier’s resources
(number of FU rows) during the optimization run.
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Algorithm Error Rate ± Standard Deviation

FUR 21.35

SVM* 22.79 4.84

LDA* 23.18 4.64

Shared Kernel Models 23.27 2.56

kNN* 23.56 3.07

GP with OS, |pop|=1.000 24.47 3.69

CART* 25.00 3.61

DT* 25.13 4.30

GP with OS, |pop|=100 25.13 4.95

MLP* 25.26 4.50

Enhanced GP 25.80 – 24.20

Simple GP 26.30

ANN 26.41 – 22.59 1.91 – 2.26

EP / kNN 27.10

Enhanced GP (Eggermont et al.) 27.70 – 25.90

GP 27.85 – 23.09 1.29 – 1.49

GA / kNN 29.60

GP (de Falco et al.) 30.36 – 24.84 0.29 – 1.30

Bayes 33.40

Table 1: Pima benchmark: Error rates and standard deviation in %. We use the
data mining toolbox RapidMiner [15] to evaluate the algorithms marked by “*”.
Preliminary, we identify good performing algorithm parameters by a grid search.
Remaining results are taken from [16].

generations 280.000 to 320.000 results in a falling test accuracy. This could
be a statistical effect, where the test accuracy varies in some interval as the
classifier is evolved from a random initialized configuration.

– The test accuracy is mostly located between 0.6 and 0.7, independent of the
changes in the number of FU rows. Thus, and this is the main observation,
the FUR architecture shows to a large extent a robust test accuracy behavior
under reconfiguration for the Pima benchmark.

Figure 8 presents the results for the Thyroid benchmark. We observe the follow-
ing:

– The training accuracy, similar to the Pima results, drops significantly when
changing the number of FU rows.

– As anticipated by previous results showed in Fig. 6 (c), the test accuracy
drops for FUR architecture configurations with very few FU rows. This can
be observed in Fig. 8 at generations 120.000 to 280.000.

– Because of the uneven distribution of category data sizes the test accuracy
deviation is smaller and follows more tightly the development of the training
accuracy.

– Analog to the observations made by the Pima benchmark, more FU rows
increase the test accuracy recovery rate.



Algorithm Error Rate ± Standard Deviation

DT* 0.29 0.18

CART* 0.42 0.27

CART 0.64

PVM 0.67

Logical Rules 0.70

FUR 1.03

GP with OS 1.24

GP 1.44 – 0.89

BP + local adapt. rates 1.50

ANN 1.52

BP + genetic opt. 1.60

GP 1.60 – 0.73

Quickprop 1.70

RPROP 2.00

GP (Gathercole et al.) 2.29 – 1.36

SVM* 2.35 0.51

MLP* 2.38 0.62

ANN 2.38 – 1.81

PGPC 2.74

GP (Brameier et al.) 5.10 – 1.80

kNN* 5.96 0.44

Table 2: Thyroid benchmark: Error rates and standard deviation in %. We use
the data mining toolbox RapidMiner [15] to evaluate the algorithms marked by
“*”. Preliminary, we identify good performing algorithm parameters by a grid
search. Remaining results are taken from [16].

– The main result is that reconfigurations of the FUR architecture are quickly
compensated in the test accuracy. The limitation in the case of the Thyroid
benchmark is a minimum amount of FU rows to leverage robust behavior.

In summary, as long as the FUR configuration contains enough FU rows, FUR’s
test accuracy behavior is stable during reconfigurations. Additionally, more FU
rows leverage faster convergence.

4 Conclusion

In this work we propose to leverage the FUR classifier architecture for creating
evolvable hardware systems that can cope with fluctuating resources. We de-
scribe this reconfigurable FUR architecture and experimentally evaluate it on
two medical benchmarks. First, we analyze the overfitting behavior and show
that the FUR architecture performs similar or better than state-of-the-art clas-
sification algorithms. Then we demonstrate that FUR’s generalization perfor-
mance is robust to changes in the available resources as long as a certain amount
of FU rows is present in the system. Furthermore, FUR’s capability to recover
from a change in the available resources benefits from additional FU rows.
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