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ABSTRACT
In the domain of power grid systems, scheduling tasks are
widespread. Typically, linear programming (LP) techniques
are used to solve these tasks. For cases with high complex-
ity, linear system modeling is often cumbersome. There,
other modeling approaches allow for a more compact rep-
resentation being typically also more accurate as non-linear
dependencies can be captured natively.

In this work, we focus on the optimization of a power plant
start-up sequence, which is part of the network restoration
process of a power system after a blackout. Most large power
plants cannot start on their own without cranking energy
from the outside grid. These are the non-black start (NBS)
units. As after a blackout we assume all power plants be-
ing shut down, self-contained power plants (black start (BS)
units), such as the hydroelectric power plants, start first and
boot the NBS units one after each other. Once a NBS unit
is restored, it supports the restoration process and because
an average NBS unit is much larger than a BS unit, NBS
unit’s impact on the restoration process is typically domi-
nant. The overall restoration process can take, depending on
the size of the blackout region and the damaged components,
some hours to weeks. And as the blackout time corresponds
directly to economic and life losses, its reduction, even by
some minutes, is worthwhile.

In this work we compare two popular metaheuristics, the
genetic (GA) and simulated annealing (SA) algorithms on
start-up sequence optimization and conclude that an effi-
cient restoration plan can be evolved reliably and, depending
on the implementation, in a very short period of time allow-
ing for an integration into a real-time transmission system
operation tool.

1. INTRODUCTION
With better and cheaper communication and monitoring

capabilities the modern electric power systems became more
and more flexible and robust. However, the risk of a to-
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tal power system blackout is still present and with the in-
creasing share of renewable energy sources even on the rise.
A power system blackout can cause dramatic consequences.
Recent power system blackouts (for instance, the Northeast
America blackout in 2003 [6], the Japan power system col-
lapse caused by an earthquake in 2011 [1] and the Northern,
Eastern and Northeast India power system blackout in July
2012 [8]) have demonstrated that an efficient power system
restoration plan is of utmost importance.

For an optimized generator start-up sequence, multiple
approaches have been investigated. In [11], the generator
start-up sequence is formalized as a mixed integer linear pro-
gramming problem. However, while optimizing the start-up
sequence the paper considers only the temporal constraints.
Important performance indexes such as the power increasing
rate, capacity, reliability and node importance degree of an
NBS power plant are neglected. As performance indexes are
often rated differently regarding their relevances by human
experts, using them as a part of the goal function requires
harmonization. This can be done by the the analytic hier-
archy process and vague sets, as presented in [12] or by the
fuzzy Choquet integral operator and group decision making,
as done in [5] and [4].

A very similar problem to the generator start-up sequence
optimization is the optimization of restoration paths, where
a rebooted power plant starts powering up neighboring loads.
This is the subsequent step after restoring power plants
and has been investigated in [2] by reformalizing the pro-
cess as an combinatorial problem and making it input to a
quantum-inspired evolutionary algorithm. In [9] the restora-
tion path selection has been solved by using a multi-objective
evolutionary algorithm giving the system operator different
solutions that are maximizing the load shedding and mini-
mizing the switching operations. The similarity of restora-
tion path and generator start-up sequence optimization comes
not only from the fact that the two tasks are closely inter-
leaved during the restoration process. Their encodings and
the algorithmic approaches for solving them are very simi-
lar. Combining generator start-up sequence and restoration
path optimization into a single task would allow for better
solutions. However, the search space grows exponentially.
To achieve appropriate computing times decomposition of
the algorithmic components can be required.

The entire restoration process is dynamic, composing of
many subproblems and is inherently multi-objective. Its
formalization as a single and monolithic optimization task
would allow for high-quality solutions but would also be very



likely not fast enough for making decisions within minutes.
Decomposing the restoration process into tasks handled by
metaheuristics allows for computing potential decisions im-
mediately, continuously improving their quality. New status
information can easily make its way into the running opti-
mization process as well as help avoiding a full optimization
restart, which can be necessary when using linear program-
ming techniques. The contribution of this paper is therefore
a study of a metaheuristic-friendly encoding for capturing
the generator start-up sequence, analysis of appropriate op-
erators such as perturbation/mutation and recombination,
first work towards efficient multi-objective evolutionary op-
timization of generator start-up sequences, and the compar-
ison of two popular methods for combinatorial challenges,
the Simulated Annealing and Genetic Algorithm.

The paper is organized as follows: Section 2 describes
the generator start-up sequence formulation with its con-
straints and the objective function. Section 3 sketches the
employed optimization algorithms, their parameters and op-
erators. Section 4 presents the methodological approach of
the work, shows the data set and the performance metrics,
investigates the inner mechanisms of the proposed operators
and finally compares Simulated Annealing and the Genetic
Algorithms on generator startup sequence optimization. Fi-
nally, Section 5 concludes the analysis, summarizing the re-
strictions and outlining current and future efforts.

2. FORMULATION OF GENERATOR
START-UP PROCEDURE

In this section, we introduce a simplified boot sequence
model of a power plant and present constraints as well as
objective functions for the overall optimization problem.

2.1 Temporal BS Unit Boot Sequence Model
A generator start-up sequence begins with booting all NB

units. NB units can boot independently. As soon as there is
energy in the grid, the first NBS unit starts booting which
draws energy from the grid for some time. When there is
enough free energy available again, the next NBS unit is
started, and so on. Fig. 1 illustrates an example for a boot-
ing procedure for a grid with one BS and one NBS unit.
Fig. 1 (a) shows the output power of a BS unit during the
restoration process. Starting at tBS

start, denoted as t0 in the to-
tal available grid power diagram in Fig. 1 (c), the BS unit ini-
tiates its internal components for tBS

prep units of time. Then,
at the time point t1 = tBS

start + tBS
prep, the BS unit starts in-

jecting energy into the grid and increases its output power
linearly for tBS

inc time units until reaching 90% of the maximal
output power PBS

max at t7 = tBS
start + tBS

prep + tBS
inc. As a general

rule, the maximal output of BS and NBS units is assumed
to be 90% of their rated power due to reserve power for fre-
quency and voltage control. The capacity of a unit is defined
as the sum of the rated and cranking powers. The cranking
power of a BS unit is set to be zero. A closed form of a BS
unit output function during restoration is:

PBS
out(t) =


0 if t < tBS

start + tBS
prep =: t1

0.9·PBS
max

tBS
inc

(t− t1) if t1 ≤ t < t1 + tBS
inc =: t7

0.9 · PBS
max else.

(1)
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Figure 1: Temporal model of the boot process of a grid with
one BS and one NBS unit.

2.2 Temporal NBS Unit Boot Sequence Model
Fig. 2 illustrates the simplified interconnect between a

generator of an NBS unit and the outer grid. Three power
flows can be identified in this figure. In the regular operation
mode the energy produced by the generator, presented by
a circle with a sine wave inside, is flowing through a trans-
former, presented by three overlapping circles, and a closed
switch no. 3 to the outside grid. Additionally, part of the
produced energy flows through the same transformer and
the closed switch no. 1 to NBS unit’s own ancillary devices.
Switch no. 2 is open. This way, the NBS unit can produce
and consume it’s own cranking power, which is the regular
case in normal operation conditions.

In case an NBS unit is currently booting and producing
not enough power to supply its ancillary devices, it needs
support form the grid. This can be realized by enabling a
third power flow from the grid over the second transformer,
presented by two overlapping circles, and the closed switch
no. 2. The correct switching sequence during a start up
is presented at the bottom of Fig. 2 and will be explained
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Figure 2: Temporal model of the boot process of a NBS unit.

later on in this section. Last thing to mention is that any
switch operation can cause electrical fluctuations. There-
fore, switch operations need a synchronization phase and
some time period after the switching point to ensure that
frequency and voltage fluctuations are coming back to nor-
mal values. This, and other electrical properties such as
over-voltage problems caused by self-excitation and energiz-
ing unload transmission lines, frequency control during the
load restoration, and cold load pick up inrush have to be
either validated before starting or checked during the opti-
mization procedure. In our previous work we have already
presented handling these requirements in an optimization al-
gorithm [10, 9]. Therefore, we will skip this, as the focus of
the current work is to find good performing encodings, op-
erators and optimization algorithms for generator start-up
sequence optimization. In our future work, we will incorpo-
rate electric checks into the optimization challenge.

The boot procedure of the NBS unit is shown in Fig. 1
(b) and is modeled as follows:

1. After a blackout, we assume all NBS units being dis-
connected from the grid. All three switches of an NBS
unit are open in Fig. 2. If some NBS unit is selected
for restoration, it closes first switch no. 2 and starts
consuming cranking energy from the grid. In Fig. 1
this happens at t1 = tNBS

start = tBS
start + tBS

prep. For simplic-
ity, we assume that the NBS unit consumes the entire
free energy of the grid but at most Pcrnk.

2. As the BS unit increases its output power linearly from
0, its output reaches Pcrnk after tNBS

rcv time units at t2 =
tNBS
start + tNBS

rcv . From now on, the NBS units consumes
Pcrnk for tNBS

crnk time units until t3 = tNBS
start + tNBS

rcv + tNBS
crnk.

In our optimization set up we assume that consuming
cranking power will not be interrupted. In a more
realistic model this event should also be considered
adding some penalty time to tNBS

crnk.

3. After consuming cranking power for tNBS
crnk time units

and energizing its ancillary devices, the NBS unit syn-
chronizes to the grid, closes the switch no. 3 and starts
producing it’s own power as well as injecting it into
the grid. Switch no. 2 stays closed until the NBS unit
produces enough energy to power its own ancillary de-
vices. For the same reason switch no. 1 stays open.

4. After the NBS unit is able to produce more energy than
its own ancillary devices consume, it closes the switch
no. 1 at t4 preparing to power its ancillary devices by
itself.

5. If the output power of the NBS unit reaches some secu-
rity margin, in our case we set this to twice the amount
of the cranking power, the NBS unit opens the switch
no. 2. From this moment on, the NBS unit produces
all the energy it requires to operate by itself and does
not rely anymore on the energy from the outside grid.
In Fig. 1 (b) this happens at t5. The switch positions
reach also their regular configuration.

6. Finally, after injecting energy for tNBS
inc time units the

NBS unit reaches at t6 = t3 + tNBS
inc 90% of it’s rated

power and enters the normal operation conditions. The
power produced by the NBS unit is available as crank-
ing power to other NBS units.

A closed form formulation of the output power function
PNBS

out of a NBS unit is presented in the equation below. In
contrast to PBS

out, which depends only on the input parame-
ter time, PNBS

out depends also on the available power of the
system, which in our case is PBS

out, and the time point where
this system power gets available: tNBS

start = tBS
start + tBS

prep = t1.
With this, PNBS

out (t, Pin, t
NBS
start) amounts to

PNBS
out =



0 if t < tNBS
start =: t1

−Pin if t1 ≤ t < t1 + tNBS
rcv =: t2

−Pcrnk if t2 ≤ t < t2 + tNBS
crnk =: t3

0.9(PNBS
max +Pcrnk)(t−t3)

tNBS
inc

− Pcrnk if t3 ≤ t < t3 + tNBS
inc =: t6

0.9 · PNBS
max else.

(2)

2.3 Combined Start-up Model
The total power in the system during the booting process

is a sum of PBS
out and PNBS

out and is illustrated in Fig. 1 (c).
Since after t3 the NBS unit can send its power to the net-
work, the ramp rate between t3 and t6 equals the sum of
the output powers of the BS and NBS units. The NBS unit
reaches 90% of the nominal output at t6 and the ramp rate
reduces to the output power increasing rate of the BS unit.
After t7, the BS unit also reaches 90% of its nominal value
completing the booting process of this example.

In a larger network model with several BS and NBS units,
the NBS unit start sequence determines the temporal boot-
ing procedures of the power plants. We have developed a
corresponding simulator that takes as input a given power
network with generators and their characteristics as well as
an NBS start-up sequence and computes the development
of the overall power and the overall restoration time of the
power grid. The operation time of switches and switch in-
sulators is neglected as this time is short compared to the
total restoration time.



2.4 Constraints
Following constraints have to be respected during the restora-

tion process:

1. Each NBS unit should be able to start. This criteria
is relaxed in this work to: All BS units have to have
enough accumulated power PB to restart any of the
NBS units with the cranking power of Pcrnk: PB ≥
Pcrnk.

2. An NBS unit should receive its cranking power Pcrnk,i

uninterrupted for at least Tmini time to be able to start.
We assume this constraint to be valid in the simulation.
For real situations one has to check, whether there is
always enough cranking power in the grid between t2
and t3, adding otherwise penalty time of m hours to
the restoration process of an NBS unit.

3. Since cranking power is consumed mainly by induc-
tion motors, it is important to ensure that node volt-
ages and the network frequency lie in acceptable ranges
when BS units send cranking power to NBS units.

The benchmarks used in this work are constructed such
that the constraints hold. However, we have implemented
and used run-time constraint checks detecting invalid solu-
tions and rendering their fitness insufficient in our previous
work [9, 10].

2.5 Objective Function
The two most important goals of the restoration process

are to maximize the reliability of the generator start-up se-
quence, which essentially means minimizing the possibility
that the power system collapses again during the boot pro-
cess, and to minimize the booting time for the generator
start-up sequence.

Given N as the number of NBS units, a generator start-up
sequence is defined as s = (s1, s2, . . . , sN ), 1 ≤ si ≤ N, si 6=
sj if i 6= j, where the indices si refer to individual NBS
units. Based on the reliability index r[si] of a single gen-
erator, we can express the reliability R(s) of a generator
start-up sequence s as:

R(s) =

[
N∑
i=1

[
1− (i− 1)

1

N

]]−1 [ N∑
i=1

[
r[si]

(
1− (i− 1)

1

N

)]]

=
2

N + 1

N∑
i=1

[
r[si]

(
1− i− 1

N

)]
.

(3)
The first part of Eqn. 3 is for normalization and the second
presents the non-normalized reliability.

Consider as an example a grid with N = 4 NBS units
with reliability indices of r[NBS1] = 0.9, r[NBS2] = 0.95,
r[NBS3] = 0.8 and r[NBS4] = 0.7. For the starting se-
quence s = (NBS1,NBS2,NBS3,NBS4) the non-normalized
reliability amounts to 0.9 · 1 + 0.95 · (1− 0.25) + 0.8 · (1− 2 ·
0.25) + 0.7 · (1− 3 · 0.25) = 2.1875 and the normalized reli-
ability R(s) is given by 2.1875

2.5
= 0.875. The generator start

up sequence s′ = (NBS2,NBS1,NBS3,NBS4) results in an
overall reliability of R(s′) = 2.2

2.5
= 0.88. Thus, the second

sequence should be preferred over the first as the chance for
a brake-down during the booting process is lower.

Along with the reliability, the booting time for a generator
start-up sequence is the second criteria. The optimization

Table 1: Temperature control strategies. T0, TN , and t are
the start, terminal, and current temperatures. N is the num-
ber of SA iterations.

T
(1)
t ← T0 − T0−TN

N

T
(2)
t ← T0

(
Tn
T0

) t
N

A ←
(Tstart−Tend)(N+1)

N
B ← Tstart −A

T
(3)
t ← A

t+1
+B

T
(4)
t ← 0.5(T0 − TN )(1 + cos(πt

N
)) + TN

T
(5)
t ← 0.5(T0 − TN )(1− tanh( 10t

N
− 5)) + TN

T
(6)
t ← T0−TN

cosh( 10t
N

)
+ TN

T
(7)
t ← T0 exp(− 1

N
ln( T0

TN
)t)

T
(8)
t ← T0 exp(− 1

N2 ln( T0
TN

)t2)

goal is to arrange the generator start-up sequences such that
the reliability R is maximized and the restoration time T is
minimized. We define a single-objective goal function by
linearly weighting and aggregating the reliability R(s) and
the restoration time T (s) as:

FR,T (s) =
1

2

(
R(s) +

(
1− T (s)

Tmax

))
, (4)

where Tmax is set slightly larger than the worst case time
effort for all power plants.

The selection of an aggregated and not a Pareto-based
fitness function has the following reasons: For a fair com-
parison we would like to employ the same goal function def-
inition for all candidate optimization algorithms. A linear
combination of the objective functions is the easiest way to
achieve this and is used in this work. A common Pareto-
based goal function is ongoing work.

3. ALGORITHMS, ENCODINGS AND OP-
ERATORS

3.1 Simulated Annealing (SA)
Simulated Annealing (SA) is a trace-based algorithm it-

erating from one solution to the other by means of a pertur-
bation operator. Unlike Hill Climbing (HC), SA may also
accept worse solutions at a rate, reciprocal to the functional
qualities of the current and the derived solutions. Also un-
like the Metropolis Algorithms, this rate reduces over time
letting the SA account for the state of the optimization run.
The rational behind this is that at the beginning SA glob-
ally searches for regions with a good potential for local and
global optima while towards the end the perturbation hori-
zon is tightened for locally exploiting a region in a HC man-
ner. The implementation of a contracting neighborhood def-
inition is realized by a temperature parameter Tt, which is
reduced during an SA run gradually. There are, however
applications benefitting from episodic “reheating” of T , such
as floorplanning in chip design. In our experiments we have
exhaustively evaluated eight temperature control strategies.
They are presented in Tab. 1.

In our implementation we have realized the regular SA



algorithm. The only variations are that the size of a tem-
perature level, the period between updating Tt is set to one
and the rejection factor, which is the number of iterations
without a change of the current solution, to ∞. These pa-
rameters have had marignal impact during our experiments.

3.2 Generator Start-up Encoding
The encoding of a power plant boot sequence is done as a

string of unique numbers. The numbers are identifying the
power plants. The order of numbers in the string indicates,
which power plant to boot first, second, and so on. With this
encoding, SA’s perturbation and GA’s mutation operators
can be implemented canonically by swapping two numbers in
the sequence, as presented in Fig. 3. The encoding remains
correct after such a modification.

While this kind of encoding allows for a simple implemen-
tation of SA and EA operators, it has also the drawback of
a potentially high epistasis. (High) Epistasis denotes an ef-
fect where changing some bits in the encoding of a solution
(dramatically) impacts on the way some other bits in the en-
coding are evaluated by the goal function. A high epistatic
encoding shows often no regularities, letting the perturba-
tion/mutation and recombination operators having almost
random impact on the goal function. Unfortunately, many
combinatorial optimization problems have high-epistatic en-
codings. Despite the potential for high epistasis, Sec. 4
shows that the presented perturbation/mutation and the
uniform order-based recombination work well with this en-
coding.

6 2 3 1 4 7 5

6 4 3 1 2 7 5

Figure 3: Perturbation / Mutation operator and power plant
boot sequence definition.

3.3 Genetic Algorithm (GA)
In this work we use the standard Genetic Algorithm scheme

where new population of individuals are derived from the old
population in a loop where each time two parent individuals
are selected by a 2-tournament selection, recombined and
the off-spring individuals mutated. The recombination and
mutation probabilities define, how frequently the individu-
als are modified instead of just cloning them. For instance,
a mutation probability of 0.5 let the mutation operator re-
turn the original solution in 50% of the cases, returning a
mutated individual otherwise. The recombination and mu-
tation rates, on the opposite, specify the percentage of the
gene material that is going to be modified. Before starting
the GA loop, best 5% but at least one individual is copied
to the new population.

3.4 The Recombination Operator
SA and GA share the same problem encoding and the

perturbation/mutation operator. To realize global search
behavior, GA uses additionally a recombination operator.
Because ordered sequences are a widely used encoding model
for many real world applications including the traveling sales-

+ + - + - - +

6 2 3 1 4 7 5

3 5 7 1 4 2 6

6 2 1 5

3 5 1 6

6 2 3 1 7 4 5

3 5 2 1 4 7 6

+ + - + - - +

+ + - + - - +

parent individual A

parent individual B

off-spring individual A'

off-spring individual B'

Figure 4: Uniform Order-Based Crossover: transplanting
ordered subsets. A “-” denotes a gene selected for recombi-
nation. A set of genes selected for recombination in chro-
mosome A: “3”, “4”, and “7” are reshuffled according to the
order of these genes in chromosome B: “3”, “7”, and “4”.

man problem, some previous work has been done on mean-
ingful recombination operators for this kind of representa-
tions. We have selected the uniform order-based crossover,
which decides according to a uniform probability distribu-
tion for each gene (power plant number), whether to recom-
bine or not. Then, these genes are not transferred to a sec-
ond chromosome (start-up sequence encoding) but reordered
in the original chromosome according to the sorting of these
genes in the second chromosome. This way, ordered struc-
tures are transferred between chromosomes without produc-
ing incorrect encodings. An example is shown in Fig. 4. Re-
combined genes are marked by a “-”, other genes by a “+”.
Genes selected for recombination in chromosome A are 3,
4, and 7. Their sequence in chromosome B is 3, 7, and 4.
Thus, these three genes are reordered in chromosome A to 3,
7, 4. The chromosome A’ shows the resulting solution. The
same procedure is applied also to chromosome B. There, 7,
4, and 2 have to be reshuffled according to their order in
chromosome A: 2, 4, and 7. The resulting chromosome B’ is
shown at the bottom of Fig. 4.

4. ANALYZING GENERATOR START-UP
OPTIMIZATION

This section presents the evaluation methodology and met-
rics, analyzes good operator configurations, investigates op-
timization algorithm parameterizations, and finally compares
Simulated Annealing and Genetic Algorithms on the task of
generator start-up sequence optimization.

4.1 Evaluation Methodology and Metrics
GA and SA are randomized algorithms. Therefore, for

each algorithm parameterization GA and SA have been ex-
ecuted 30 times with varying random seeds. The algorithm
runs have been terminated after 100000 fitness evaluations
and evaluated regarding the mean, standard deviation, first,
second (median), and third quartiles as well as peak values.
To compute these numbers, the best functional quality from
each of the 30 runs has been extracted. In case of SA, the
best solution is stored in a separate variable and printed out
on exit. Elitism-based GA, on contrary, never forgets the



best solution and propagates it into the final population,
where it also gets printed out.

Once best performing SA and GA configurations have
been found, the best functional qualities of the 30 runs for
each of the algorithms are checked for statistical similarities
using the two-tailed Mann-Whitney (MW) U and the two-
tailed Kolmogorov-Smirnov (KS) tests at the significance
level of α = 0.05. The MW U test checks the hypothe-
sis whether two independent samples come from distribu-
tions with equal medians. The KS test distinguishes be-
tween H0=“Two independent sequences A and B follow the
same distribution” and HA=“Two independent sequences A
and B follow different distributions.”

Finally, we compare SA and GA regarding their compu-
tation times. For this task, the Computational Effort (CE)
metric is a popular approach computing a bound on fitness
evaluations to reach some optimization goal fg at a spe-
cific probability z [3]. CE also computes the number of fit-
ness evaluations after which an optimization run has to be
restarted, avoiding stuck in local optima. In our investiga-
tion, we set z to 99% and fg to 0.67. fg is selected such that
most of SA and GA configurations reach this functional qual-
ity, allowing for an precise comparison using the CE metric.

4.2 Data Test Case Setup
For first investigations we have used the New England 39

test case network defined in [7]. It is a greatly simplified
model of a real network case consisting of 39 busses with 10
synchronous generators. We have extended this benchmark
by additional 47 generators, which are parameterized similar
to the 10 original generators. This network sizes are not
uncommon to transmission and medium voltage distribution
grids. However, much larger networks are also relevant and
susceptible to a total blackout.

All restoration parameters of the test benchmark are pre-
sented in Tab. 2. The table columns show the power plant in-
dex, its type, the power increasing rate, the cranking power,
the restart time, the rated power, and reliability. The crank-
ing power is set uniformly to 20% of the rated power. Older
power plants may need more and modern power plants less
cranking power. The restart time denotes the preparation

time (tBS
prep) for black and cranking power receiving time

(tNBS
crnk ) for non black start units.

4.3 Evaluating Operators
In first experiments we would like to get the intuition

on how successful the perturbation/mutation and recombi-
nation operators are throughout the optimization process
and how many genetic material the operators are modify-
ing. We have configured a GA scheme setting the pertur-
bation/mutation and recombination probabilities to 1.0 and
the perturbation/mutation and recombination rates to ran-
domly values between 0.0 and 1.0 sampled anew each time
an operator is executed. Population sizes have been set
to 4, 8, 16, 32, 64, and 128. The results are presented in
Fig. 5 an Fig. 6 and are common to all GA parameteriza-
tions. Fig. 5 (a) presents the success rates and the amount
of modified genetic material for the mutation operator. As
expected, mutating even large amount of genes in the ini-
tial search phase often improves the functional quality. The
distribution of modified genetic material, which corresponds
to the perturbation/mutation rate, follows roughly exp(−x).

Table 2: Column 1: generator index, 2: generator type
(1=BS, 2=NBS), 3: power increasing rate [MW/min], 4:
cranking power (Pcrnk) [MW], 5: restart time (BS: tprep,
NBS: tcrnk) [min], 6 - rated power (Pmax) [MW] (NBS: 5 ·
cranking power), 7 - reliability.

1 2 3 4 5 6 7

1 1 6.4 NA 10 90 0.89
2 2 6.4 70 10 70/0.2 0.93
3 2 5.6 110 12 110/0.2 0.73
4 2 6.8 90 20 90/0.2 0.94
5 2 5.8 70 20 70/0.2 0.96
6 2 6.2 70 25 70/0.2 0.78
7 2 4.9 120 20 120/0.2 0.76
8 2 4.2 50 15 50/0.2 0.69
9 2 6.6 95 10 95/0.2 0.76

10 2 4.6 89 25 89/0.2 0.86
11 2 5.8 95 18 95/0.2 0.83
12 2 3.2 50 40 40/0.2 0.89
13 2 5.6 60 50 50/0.2 0.98
14 2 4.2 40 46 40/0.2 0.93
15 2 2.2 30 30 30/0.2 0.92
16 2 6.1 60 50 60/0.2 0.83
17 2 5.2 60 40 60/0.2 0.78
18 2 3.4 40 40 40/0.2 0.96
19 2 1.6 18 20 18/0.2 0.73
20 2 6.2 60 50 60/0.2 0.91
21 2 3.3 40 40 40/0.2 0.92
22 2 3.1 35 36 35/0.2 0.86
23 2 2.3 25 28 25/0.2 0.84
24 2 3.2 50 40 50/0.2 0.88
25 2 6.8 66 57 66/0.2 0.98
26 2 6.2 60 50 60/0.2 0.94
27 2 6.3 66 57 66/0.2 0.98
28 2 2.8 36 38 36/0.2 0.95
29 2 5.8 70 48 70/0.2 0.85
30 2 4.6 18 65 18/0.2 0.78
31 2 7.2 60 67 60/0.2 0.77
32 2 2.3 40 89 40/0.2 0.87
33 2 5.1 35 87 35/0.2 0.68
34 2 9.3 25 43 25/0.2 0.78
35 2 3.2 50 34 50/0.2 0.92
36 2 5.8 66 56 56/0.2 0.97
37 2 7.2 60 23 60/0.2 0.63
38 2 2.3 66 45 66/0.2 0.87
39 2 5.8 36 56 36/0.2 0.86
40 2 7.8 70 23 70/0.2 0.83
41 2 5.3 66 56 66/0.2 0.97
42 2 7.8 36 67 36/0.2 0.87
43 2 6.8 70 67 70/0.2 0.92
44 2 3.6 18 56 18/0.2 0.95
45 2 4.2 60 53 60/0.2 0.98
46 2 5.3 40 67 40/0.2 0.91
47 2 6.1 35 36 35/0.2 0.93
48 2 2.3 25 45 25/0.2 0.97
49 2 8.2 50 46 50/0.2 0.87
50 2 3.8 66 89 66/0.2 0.86
51 2 5.2 60 56 60/0.2 0.83
52 2 6.3 66 56 66/0.2 0.87
53 2 7.8 36 89 36/0.2 0.92
54 2 5.8 70 56 70/0.2 0.91
55 2 4.3 66 45 66/0.2 0.73
56 2 3.8 36 76 36/0.2 0.86
57 2 6.8 70 56 70/0.2 0.88



Table 3: Perturbation / Mutation mechanism: The number
of perturbed / mutated gene pairs is uniformly sampled from
the presented table. These gene pairs are selected randomly
and the genes are swapped.

1 1 1 1 1 1 1 2 2 2 3 5

After about 20000 fitness evaluations the distribution of suc-
cessfully modified gene material stabilizes, allowing us to de-
fine the perturbation/recombination operator that samples
its perturbation/mutation rate uniformly from the table pre-
sented in Tab. 3.

When analyzing the success behavior of the recombination
operator, apart from the expected gradual reduction of the
success probability over the time, no obvious behavior in the
amount of the modified genes can be observed in Fig. 5 (b).
However, when looking more precisely at the distribution
of the recombined genes, as presented in Fig. 6 for the GA
experiment with 16 individuals in a population and for the
optimization interval between 10000 to 20000 fitness evalu-
ations, the distribution becomes clear. The recombination
operator is more successful when configured to recombine
small and large amount of genes. The effect of the recom-
bination operator is not symmetric. While recombining a
small amount of genes, the effect of the recombination op-
erator is very similar to the mutation operator. But recom-
bining a lot of genes copies large and consolidated parts of a
chromosome to the offspring individual at a slightly different
position. This behavior comes close to shifting large parts
of a chromosome around. Later experiments show that the
recombination operator helps GA to excel when configured
at the recombination rate of around 90%.
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Figure 6: Distribution of modified genetic material for suc-
cessful recombination operations between fitness evaluations
10000 and 20000.

4.4 Parametrizing GA and SA
After have identified good perturbation/mutation and re-

combination parameters, we have exhaustively tested SA
and GA. SA was evaluated for all possible temperature range
combinations between Tstart = 1000, 100, 10, 1, 0.1, 0.01, 0.001
and Tstop = 10, 1, 0.1, 0.001, 0.0001 with Tstart > Tstop
and regarding all eight cooling schemes. In total, 176 SA
experiments with 30 SA runs each have been executed. GA
have been first executed for all mutation and recombination

Table 4: Results

SA GA
Peak value 0.68342 0.68311

Mean±SD 0.68199±1.2e−3 0.67841±1.5e−3

1st Quartile 0.68139 0.67762
Median 0.68234 0.67835
3rd Quartile 0.68300 0.67963

MW U test, p-value 1.6947e−09

KS test, p-value 1.1088e−08

CE at fg = 0.67 6201 6237
CE restart after 6201 6237

probability combinations between 0.01, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, and 0.99 and population sizes of 4, 10,
20, 50, and 100. Higher mutation and recombination rates
in combination with 20 individuals in a population showed
best performances. Therefore, GA parameterization were
refined in final experiments to all mutation and recombina-
tion probability combinations between 0.90, 0.92, 0.93, 0.94,
0.95, 0.96, 0.97, 0.98, 0.99 and 0.999 and a population size
of 20. In total, 705 GA experiments with 30 GA runs each
have been executed.

4.5 Comparing GA and SA
Tab. 4 presents the evaluation of best SA and GA configu-

rations. SA achieves the best peak performance of 0.683423
when started at Tstart = 10.0, Tstop = 0.0001 and the cool-
ing scheme 3. GA achieves a peak performance of 0.683112
with the recombination probability/rate of 0.9 and the mu-
tation probability of 0.9. While SA is slightly ahead of GA,
similar peak values indicate that the exhaustive parameter
tuning explored the most promising GA and SA parameter
combinations.

The second group of lines in Tab. 4 summarizes the figures
for the SA and GA configurations with best average finesses.
For this, SA has to be configured with Tstart = 0.001,
Tstop = 0.0001 and the cooling scheme 6 and GA with

the recombination probability/rate of 0.9 and the mutation
probability of 0.999. The table figures show that while the
standard deviations for both algorithms are compact and
similar, the distance between the means amounts for 0.004.
The distances for the medians and the quartiles are differing
also for 0.003 to 0.004, underlying the disparity of perfor-
mances. While the differences seem to be marginal, the
MW U and the KS tests reject the h0 hypothesis with very
low p-values. Interestingly, the CE for SA is more than
twice as large as for GA. This could indicate that SA is
able to steadily improve the best solution even in the fi-
nal search phase while the GA is fast in the beginning. In
our Matlab implementation a regular Intel i7 notebook pro-
cessor requires a second to compute 500 fitness values. To
evolve solution with a functional quality of 0.67 and above
with a probability of 99%, on average 12 seconds are there-
fore needed. However, implementing the optimization algo-
rithms using C or C++ and parallelizing the GA can reduce
the computation time significantly.

The best CE value achieved by SA amounts for 6201 fit-
ness evaluations at Tstart = 1.0, Tstop = 0.0001 and the
cooling scheme 3. This is similar to the best GA figures



(a) Mutation operator (b) Recombination operator

Figure 5: Number of successful executions of the perturbation/mutation and recombination operators and the distribution of
the genetic material modified during this executions.

indicating again, that given similar or identical operators
and problem encodings, the exhaustive parameter tuning
was able to find for each of the optimization algorithms a
parameterization allowing to reach similar peak values.

5. CONCLUSION
This paper investigates on the task of power plant boot

scheduling, encoding models, operators and nature-inspired
metaheuristics. The insights we have gained in our work are
that SA and GA are highly effective for generator start-up
sequence optimization with suitable computation times for
real-time control systems for network restoration. Addition-
ally, while epistasis is very likely a problem of the presented
encoding, the uniform order-based crossover seems to work
very well.

In ongoing and future work, we will implement a Pareto-
based MOEA using the operators presented in this paper,
try to mathematically formalize the restoration procedure
more precisely, improve the execute time, and compare the
algorithms to linear programming approaches.
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