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Abstract—In this work we present EvoCache, a novel ap-
proach for implementing application-specific caches. The key
innovation of EvoCache is to make the function that maps
memory addresses from the CPU address space to cache
indices programmable. We support arbitrary Boolean mapping
functions that are implemented within a small reconfigurable
logic fabric. For finding suitable cache mapping functions we
rely on techniques from the evolvable hardware domain and
utilize an evolutionary optimization procedure. We evaluate the
use of EvoCache in an embedded processor for two specific
applications (JPEG and BZIP2 compression) with respect to
execution time, cache miss rate and energy consumption. We
show that the evolvable hardware approach for optimizing
the cache functions not only significantly improves the cache
performance for the training data used during optimization,
but that the evolved mapping functions generalize very well.
Compared to a conventional cache architecture, EvoCache
applied to test data achieves a reduction in execution time
of up to 14.31% for JPEG (10.98% for BZIP2), and in energy
consumption by 16.43% for JPEG (10.70% for BZIP2). We also
discuss the integration of EvoCache into the operating system
and show that the area and delay overheads introduced by
EvoCache are acceptable.

I. INTRODUCTION AND RELATED WORK

Cache memories are important and well-investigated ele-
ments of any modern processor’s memory hierarchy. While
carefully designed and balanced cache hierarchies greatly
improve processor performance, they also require substantial
amounts of energy. In order to explore the performance
energy trade-off for caches, Albonesi [1] proposed so-called
selective cache ways. Selective cache ways is a technique to
switch off certain ways of a k-way set associative cache
to save energy in times of modest cache activity. The
implementation foresees a new control register, the cache
way select register, set by software using special instruc-
tions to signal the hardware which cache ways to enable
or disable. Albonesi details the hardware organization of
selective cache ways and evaluates performance and energy
on CPU benchmarks including applications of the SPEC95
benchmark suite. For a 4-way set associative cache he
reports a 40% energy reduction with only 2% performance
degradation. The work points to software profiling tools and
on-chip performance counters that could be used to drive
the decision on the actually used number of cache ways but
does not propose a specific method for finding the optimal
cache configuration.

Ranganathan et al. [2] investigate reconfigurable caches

tailored to application domains, in particular to CPU bound
media processing. They propose to use the available cache
memory for different purposes or modes, such as table
lookup for instruction reuse, software and hardware data
prefetching, or compiler and application controlled data
memory. The implementation of the reconfigurable cache
relies on a proper partitioning of the cache memory and is
conceptually similar to Albonesi’s approach [1]. The authors
envision only two to three different cache configurations
which are built-in at design time. At run-time, switching
between these configurations would be controlled by a few
multiplexers. For the instruction reuse mode, experiments
with media processing benchmarks demonstrate improve-
ments in IPC (instructions per cycle) of 4%–20%. The
reconfiguration process and its triggering are not detailed,
however. The paper outlines that a cache reconfiguration
could take place at different frequencies, e.g., when a new
application starts or even at the beginning of a new loop,
and can be controlled by hardware or software.

Zhang et al. [3] present self-tuning cache architectures
for embedded processors. They assume a cache with several
dynamically reconfigurable parameters including the cache
size, the associativity, the block size, and the way prediction.
Each parameter can be set to three values except the way
prediction which is a binary. The authors propose to augment
the processor with a hardware tuner module that adaptively
selects a cache configuration at run-time. The algorithm
implemented by the tuner is a rather simple search heuristic
relying on an experimentally determined ordering of pa-
rameters. Using an energy estimate based on the static and
dynamic energies of the CPU, cache and external memory,
savings of up to 40% in energy required for total memory
accesses are reported.

All approaches discussed so far try to modify the cache
configuration, i.e., the active cache size, the associativity,
and the block size, or more generally the use of the on-chip
memory cells. A radically different and less-investigated
approach is to modify the translation or mapping between
address bits and cache line index. Classically, the lower
address bits are used for byte and block offsets in case of a
byte-addressable architecture and multi-word cache blocks,
respectively. The remaining higher address bits are split into
cache index and tag. The cache index is then binary decoded
to select the cache line which effectively results in a modulo
address mapping.
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Figure 1. The evolvable cache (EvoCache) architecture provides a configurable mapping from CPU memory addresses to cache indices. The optimization
process reconfigures node functions and the wiring between the nodes. The nodes represent Boolean functions with nn inputs (see Figure 2). The figure
shows an example of a two way set associative cache.

The mapping from address to cache line index can be
seen as hashing problem and there a many possible hashing
functions besides the typical modulo mapping. Stanca et
al. [4] investigate a hashed address mapping, the so-called
bit juggling technique, that permutes bits from the original
address to form the new index; the tag however remains
untouched. Such an address mapping is suspected to work
well for pointer-based code that shows very low spatial and
temporal locality. The authors experiment with level one
data caches (L1:D) and report reductions in miss rates of
up to 12% for small caches and an MPEG encoder/decoder
benchmark. The paper does, however, neither discuss the
adaptation of the address mapping nor techniques to deter-
mine suitable permutations.

More recent work [5], [6] on application-specific reconfig-
urable cache hashing functions focuses on XOR functions
where each index bit is the XOR of exactly two address
bits. The restriction to two input bits is motivated by the
simplicity of the resulting logic. Heuristic and optimal algo-
rithms are discussed for determining the input bits depending
on the memory access stream of a specific application run,
where optimality refers to a minimum number of cache
misses. In [5], Vandierendonck and De Bosschere use an
SA-110 ARM processor model configured with a 4 KB L1
direct mapped cache and benchmarks from the PowerStone,
MediaBench and MiBench suites for experimentation. Par-
ticularly interesting are the presented cross profiling results,
which demonstrate the generalization behavior of the XOR
mapping functions trained on a specific application and input
data for different test input data. Two metrics are reported,
the reduction of the miss rate and the reduction of the overall
run time. While in nearly all cases the miss rates were
reduced over a modulo cache, the corresponding run times
do not strictly follow this trend and, occasionally, slowdowns
were observed.

Our work shares with related approaches the main concept
of modifying the mapping between address and cache line
index in dependence of the application. We strongly differ,
however, in the following novelties: The address mappings
for the caches are implemented by more versatile reconfig-
urable logic circuits and are determined by an evolutionary

search technique. Our cache hierarchies are more realistic
with split L1 and unified L2 caches, as well as external
main memory. The evolutionary optimization is driven by
an application’s overall execution time which is simulated
in a cycle-accurate manner.

The remainder of this paper is organized as follows.
Section II introduces the concept of an evolvable cache
(EvoCache) and describes its integration into the processor
architecture and the operating system. In Section III, we
present the models and algorithms used for evolving caches.
In Section IV, we evaluate the proposed EvoCache by
comparing the results with conventional caches. Finally, we
conclude and present an outlook to future work in Section V.

II. THE EVOCACHE CONCEPT

The key idea of the EvoCache approach is presented in
Figure 1. A very small reconfigurable logic fabric imple-
ments a hashing function that maps a part of a memory
address to a cache line index. The hashing function is
optimized to achieve a low overall execution time for a
specific application. The algorithmic methods for optimiza-
tion originate in the Evolvable Hardware (EHW) domain
which aims at automated circuit design and optimization
by combining evolutionary algorithms and reconfigurable
hardware technology. Our architecture provides a mapping
function memory that can store several configurations for
the reconfigurable logic fabric, which allows for quickly
switching to different memory-to-cache address mappings.
To prevent aliasing, i.e., storing several potentially dirty
copies of the same physical address at different indices in the
cache, we flush the cache when a new mapping is activated.

The EvoCache approach is orthogonal to other work
trying to select and/or reconfigure the cache organization
in an application-specific way, e.g., [1]–[3]. While Fig-
ure 1 displays an address mapping for a byte-addressable
architecture to a 2-way associative cache with a block size
of four words, the EvoCache principle is applicable to
all possible configurations and levels of caches. Compared
to classical modulo mappings or mappings based on bit
permutations [4] and XOR functions [5], [6], EvoCaches
utilize more complex, evolved hashing functions allowing
them to reduce an application’s overall execution time and



energy requirement as we will show in the remainder of the
paper.

Including EvoCaches into a processor architecture will
also increase the logic area, the hit time and the overall
number of memory cells for the cache. The increase in logic
area is due to the reconfigurable fabric itself which is as-
sumed to be small as the fabric comprises only a handful of
look-up tables (LUTs). Additionally, we require a mapping
function memory to store the configurations for the logic
fabric. The size of a configuration is architecture dependent.
The architecture used for the case study in this paper comes
with a configuration size of 151 bytes. The increase of the
cache size is due to the fact that the flexibility in the hashing
function requires us to store the full address excluding
block and byte offsets as tags in the cache. The additional
overhead incurred depends on the actual cache configuration.
For example, a conventional 4-way set associative cache of
16 KByte data with block size of two words for a byte-
addressable architecture with 32 bit addresses comes with
an overhead of 25.56%, where the overhead includes for
each cache block the valid bit and the tag. Switching to
an EvoCache of same data size and organization increases
the overhead to 34.88%. We think this overhead is bearable
since today most processor designs are not restricted by
silicon area but by performance and performance per energy.
The increase in hit time is more critical. The additional
delay depends strongly on the depth of the LUT network.
This depth can be restricted in the optimization process to
satisfy timing constraints. Moreover, for many embedded
processors with clock frequencies well below one GHz,
the pressure on the timing is moderate. High-performance
processors, on the other hand, have several levels of cache
where only the first level is optimized for hit time. Here,
the EvoCache approach can still be applied to higher level
caches.

Integrating EvoCaches with a standard operating system
environment requires only a few modifications. For keeping
the information about the cache mapping as close as possible
with the application’s binary, we choose to store it as an
optional section in the binary itself. Since all commonly
used binary formats, such as COFF, ELF or MachO, support
storing multiple code and data areas (sections) in the binary,
this feature can be easily added without requiring a new
binary format. The cache mapping information can be added
by the standard linker. Since this information is small
(typically a few hundred bits) the binary size is only slightly
increased.

For activating the cache mapping when an application is
started, the application loader needs to be extended. After
loading the application’s text and data sections, the loader
configures the mapping function memory according to the
information stored in the binary. The operating system also
stores the cache mapping as part of the context of a process.
For multi-tasking operating systems, the operating system

changes the cache mapping at every context switch to a user
task.

The proposed change of the binary format integrates the
support for EvoCaches in a backward compatible way. First,
the additional section containing the cache mapping will
be ignored when the application is executed on a system
without EvoCache. Second, systems with EvoCache can still
execute standard binaries. If the loader detects that no cache
mapping information is present, it will initialize the classical
modulo cache mapping.

In this paper, we determine a suitable cache mapping
function for an application and a specific input data set
with the evolutionary optimizer, and then evaluate the perfor-
mance on different input data sets to verify the generalization
capability of EvoCaches.

III. REPRESENTATION MODEL AND OPTIMIZATION
ALGORITHM

This section describes the hardware representation model,
the evolutionary optimization algorithm, and the method
used to evaluate the fitness of candidate circuits.

A. Cartesian Genetic Programming

The evolved logic function consists basically of a set of
combinational logic nodes arranged in a two-dimensional
grid and connected by feed-forward wires. Additionally, the
circuit comprises a number of primary inputs and primary
outputs. The grid structure of the circuit is inspired by
field programmable gate array (FPGA) architectures and also
depicted in Figure 1. Such a hardware representation model
is known as Cartesian Genetic Programming (CGP) model
and widely used in the evolvable hardware community [7].

Formally, a CGP model is a (nr × nc)-grid of nodes. A
node can have nn inputs which connect to global inputs
and to nodes in the previous l columns. In the experiments
presented in this paper we have used look-up tables (LUTs)
with four inputs (nn = 4) as node functions. The functional
set f for the nodes has not been constrained, i.e., f = B16.
To reduce the search space and thus increase the efficacy
of the evolutionary optimizer, we configure the CGP model
to have only one row (nr = 1) but nc = 32 columns. The
levels-back parameter is set to l = 31. The circuit’s inputs
are fed from ni = 27 primary inputs taken from the memory
address. The no = 15 bit outputs of the circuit encode the
cache line index.

The one-row CGP model is sketched in Figure 2. The
mapping from a circuit evolved in this one-row model to
a two-dimensional grid as shown in Figure 1 is straight-
forward as long as the maximal circuit depth is limited to
the number of columns of the grid. The circuit depth is
an important parameter for EvoCaches as it is proportional
to the delay of the resulting hashing function which adds
to the cache hit time. While constraining the circuit depth
during optimization can be easily done, the experiments in
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Figure 2. Cartesian Genetic Programming (CGP) model in a one-row
configuration.

this paper have been conducted with unconstrained circuit
depth. Instead, in Section IV we report on the depths and
sizes of the evolved circuits.

B. Evolutionary Strategies

As optimization technique we use an evolutionary strat-
egy (ES). We have also conducted studies with genetic
algorithms, even with multi-objective genetic algorithms [8]
that simultaneously optimize for run-time, energy, and the
delay and area of the reconfigurable logic. Among these
algorithms, the ES excels in optimizing for run-time. The
results presented in this paper have been achieved with a
standard 1 + 4 ES scheme, where in every generation one
parent creates four children through mutation. One of the
fittest children proceeds to the next generation. The parent
is promoted to the next generation if it excels all children.
The mutation operator modifies a single gene during child
creation, i.e., the function of a single logic node or the wiring
of one of its inputs is affected.

C. Fitness Evaluation and SimpleScalar Integration

For the experiments, we leverage our MOVES EHW
toolbox [9], which comprises different hardware represen-
tation models and evolutionary optimizers. Additionally, the
toolbox generates a set of jobs for fitness evaluation and
distributes them on a compute cluster.

The tool setup is presented in Figure 3. The MOVES
toolbox includes the CGP model and the ES. Whenever a
new candidate circuit is generated, it is passed to the proces-
sor simulator SimpleScalar [10] for fitness evaluation. Sim-
pleScalar reads the description of the circuit and simulates
the execution of a specified benchmark and input data on a
processor with given cache configuration in a cycle-accurate
manner. We have chosen SimpleScalar for system simulation
as it is easily extensible and it models a variant of the widely-
used MIPS instruction set architecture. Two modifications
to the original SimpleScalar tool have been necessary. First,
its command line interface has been extended to include the
activation and specification of up to four mapping functions.
These circuit specifications are read in and stored in a data
structure. Second, for the actual mapping between addresses
and cache line index, SimpleScalar needs to determine the
logic result for the mapping function. To this end, the circuit
evaluation routine already available in the MOVES toolbox
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Figure 3. EvoCache tool setup: SimpleScalar is invoked by the MOVES
toolbox and returns the overall execution time in clock cycles as a fitness
measure.

has been extracted into a library (moves.lib) and linked
with SimpleScalar. In each simulation run, SimpleScalar
determines an application’s overall runtime and feeds it back
as fitness value into the evolutionary optimizer.

D. Miss Rate and Energy

Besides the cycle-accurate runtime, SimpleScalar deter-
mines the miss rates for the different levels of caches. Our
interest in the miss rates is motivated by the fact that related
work used miss rates to measure the fitness of a specific
cache configuration. However, for more sophisticated pro-
cessor architectures metrics solely based on miss rates might
be less conclusive than execution time. The downside of
using the cycle-accurate execution time as main metric is
the long simulation time. We have constrained the simulation
time to three to five minutes for a single fitness evaluation,
which results in a overall runtime of roughly one week
for a single and complete ES run. These constraints on the
simulation time resulted in limiting the input data size for the
benchmarked applications to some 100 KBytes which poses
sufficient pressure on the cache architecture of an embedded
processor as modeled in our work. However, a modern
general-purpose processor’s cache architecture would not
be stressed sufficiently and thus require the simulation of
application runs on larger data sizes.

As energy estimate we use a variant of the energy model
presented in [3] which splits the energy demand in a static
and dynamic part. We model an embedded processor with
up to two levels of cache and an external memory. For each
of the caches, i.e., split level one caches L1:I and L1:D and
unified level two cache L2:U as well as for the external
memory, the static or stand-by energy per cycle is given by
EL1:I,s, EL1:D,s, EL2:U,s and EM,s. With c as the number
of clock cycles required for program execution, the static
energy is

Estatic = (EL1:I,s + EL1:D,s + EL2:U,s + EM,s) · c

The dynamic energies per access are given by
EL1:I,d, EL1:D,d, EL2:U,d and EM,d and the number



of accesses as aL1:I , aL1:D, aL2:U and aM . Thus, the
dynamic energy results in

Edynamic = EL1:I,d · aL1:I + EL1:D,d · aL1:D +
EL2:U,d · aL2:U + EM,d · aM

The actual values in [nJ ] for the static energy per cycle
and dynamic energy per access are derived from the CACTI
cache model [11] for a 90 nm technology node. For the
external memory, these values have been derived from the
data-sheet of a standard V58C2256 DDR SDRAM module.
The overall number of clock cycles and the number of
accesses are determined by the SimpleScalar simulator.
Finally, the CPU energy Ecpu is computed by assuming a
CPU with an average power consumption of 0.45 mW per
MHz at a clock frequency of 200 MHz implemented in 90
nm technology [12]. The overall energy for an application
run thus adds up to

E = Ecpu + Estatic + Edynamic

IV. EXPERIMENTS AND RESULTS

To evaluate the EvoCache concept, we have configured
a processor and its memory hierarchy in a configuration
similar to those of current ARM processors [12]. The
configuration is shown in Figure 4 and includes a split first
level cache and a unified second level cache. The L1 caches
are 2-way associative with a hit latency of one cycle, 64
sets and a block size of 16 bytes. The L2 cache has an
associativity of four ways with a hit latency of 6 cycles, 128
sets and a block size of 32 bytes. The memory bus between
the L2 cache and the external memory is 8 bytes wide. The
external memory shows an access time of 18 cycles and a
2-cycle delay for consecutive data transfers in burst mode.
Hence, the miss penalty for the L2 cache amounts to 24
cycles. Using this configuration, a conventional cache system
for a byte-addressable architecture with 32 bit addresses has
a 22 bit tag and a 6 bit index for the L1 caches and a 20
bit tag and 7 bit index for the L2 cache, respectively. For an
EvoCache, the original tags and indices merge into a single
tag of 28 and 27 bits for the L1 and L2 caches, respectively.
We have evolved mapping functions for two optimization
scenarios. In the first optimization scenario, only the first
level caches (LI:I and L1:D) are EvoCaches with evolved
mapping functions while in the second scenario all three
caches receive evolved mapping functions. Thus, a single
chromosome describing the system’s mapping functions
consists of two CGP chromosomes in the first optimization
scenario and of three CGP chromosomes in the second
optimization scenario.

For evaluation we have simulated the execution of two
benchmarks, BZIP2 (version 1.0.4) and JPEG (version 6a),
each with different sets of input data. BZIP2 is a recent
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Figure 4. Two memory hierarchy configurations considered for the
optimization of the address mapping function: (1) optimization of split first
level caches (L1:I,L1:D), (2) optimization of an additional unified second
level cache (L1:I, L1:D, L2:U).

data compressor based on the Burrows-Wheeler transforma-
tion [13] and was reported to cause a large amount of cache
misses. The picture encoding application JPEG [14] is a
commonly used benchmark for performance analysis.

For each combination of benchmark and optimization
scenario, we have proceeded as follows. First, we have
evolved a mapping function for a given input data set,
denoted as training data. This optimization step has been
repeated for 16 times. To study the potential of EvoCaches,
we analyze the fitness development of the best and the worst
individual in each generation as well as the average over all
16 runs over two reference systems. These are a cache-less
system with a one cycle memory access time which as such
is unrealistic but serves as point of reference, and a two-level
cache with classical modulo address mapping functions.

Second, we have determined the generalization behavior
by evaluating the best evolved mapping functions on differ-
ent sets of input data, denoted as test data. These results are
actually more important than the results achieved for training
data, as they reflect the practical use case of EvoCaches.
While we have used random mapping functions to initialize
the evolutionary optimizer for both benchmarks, we have
additionally experimented with modulo mappings as initial
individuals for BZIP2.

For BZIP2, the training data set consists of the HTML
code from Wikipedia’s page on ’Genetic Programming’ [15].
The test data consists of 30 data sets partitioned in HTML
data, Linux binaries, and human-readable text files. For
JPEG, the training data set originates from the standard
picture contained in the JPEG source code distribution. As
test data, we use ten data sets from [16] and [17].

A. Training EvoCaches

Figure 5 presents results for BZIP2 and optimization
scenario two, i.e., evolving address mapping functions for
L1:I, L1:D and L2:U simultaneously. In Figure 5(a), the
evolutionary strategy started with classical modulo mapping
functions, whereas Figure 5(b) shows the fitness devel-
opment for randomly initialized evolutionary search. The
four curves in each graph are plotted against the number
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Figure 5. Development of the best, average and worst fitness values
over 16 runs for the BZIP2 benchmark and the simultaneous optimization
of split L1 and unified L2 caches. In (a), the evolutionary optimizer has
been initialized with the classic modulo mapping function, in (b) a random
initialization was chosen.

of generations and picture the fitness which is defined as
reciprocal of the overall execution time relative to the cache-
less reference system with a one cycle access time. That
is, since BZIP2 executing training data on the cache-less
reference system requires 13’131’325 cycles and on the clas-
sical modulo cache 34’417’080 cycles (2.62X slowdown),
the modulo cache is indicated by a straight line at 0.3815.

The remaining curves in Figure 5 show the maximal,
minimal, and averaged fitness values for the evolved map-
ping functions. The main result is that mapping functions
outperforming the modulo cache are easily evolved. Com-
paring Figures 5(a) and 5(b) we can observe that starting
evolution from classical modulo functions is not beneficial.
Starting from random mapping functions, we obviously need
more generations to beat the modulo cache mapping but the
resulting fitness values are overall better and more varied.

Optimization scenario one, i.e., evolving mapping func-
tions for first level caches only, reveals similar behavior.
Table I lists the performance gains over the classical modulo
cache mappings for both experiments. The table shows the
best and average individuals of the 16 runs. The fitness
is indicated in columns three and five. For example, the
best fitness achieved in the 16 runs for evolving mapping
functions for the level one cache (L1:I,D) has been 0.39996
which results in a 4.7% improvement in execution time over
the classical modulo mapping function.

optimization modulo random
scenario initiali- relative to initiali- relative to

zation mod cache zation mod cache
L1:I,D avg 0.3952 3.6% 0.4038 5.8%

max 0.3996 4.7% 0.4086 7.1%
L1:I,D, avg 0.3994 4.6% 0.4037 5.8%
L2:U max 0.4096 7.3% 0.4174 9.4%

Table I
PERFORMANCE OF THE AVERAGE AND THE BEST INDIVIDUALS ON

TRAINING DATA FOR BZIP2 AFTER 2500 GENERATIONS.

optimization random relative
scenario initialization to mod cache

D1:I,D avg 0.6623 11.2%
max 0.6975 17.1%

D1:I,D, avg 0.6718 12.8%
D2:U max 0.6962 16.9%

Table II
PERFORMANCE OF THE AVERAGE AND BEST INDIVIDUALS ON

TRAINING DATA FOR JPEG AFTER 1400 GENERATIONS.

Table II summarizes the training results for the JPEG
benchmark. Here, we report only experiments with randomly
initialized evolutionary searches. We can observe that the
average performance achieved for optimizing both cache
levels is actually higher than the performance achieved
for optimizing only level one caches. The best individual
with 17.1% improvement in runtime is found, however, by
optimizing level one caches.

B. Testing EvoCaches

To verify the generalization performance of EvoCaches,
we have evaluated the execution times, the miss rates, and
the energy requirements for BZIP2 and JPEG and the dif-
ferent optimizations scenarios. For BZIP2, we have selected
the four best individuals from the training phase according
to the two optimization scenarios and ways of initializing
the evolutionary search. The test data for BZIP2 comprise
ten data sets taken from Linux binaries (ELF benchmark),
ten data sets taken from HTML dumps of popular web
sites (HTML benchmark), and ten data sets taken from
RFCs (TXT benchmark). The detailed results are shown
in Table III. In this table, the optimization scenario L1-
MI denotes optimization of level one caches with modulo
initialization, L12-RI the optimization of both levels of
caches with random initialization, etc. The numbers for a
single benchmark, optimization scenario and initialization
technique are averaged over the according ten data sets and
measured relatively to the performance of a conventional
system with modulo address mappings. That is, positive
percentages indicate an improvement in execution time, a
reduction in miss rate, and a reduction in energy. The miss
rates for all caches have been added to achieve the miss rate
metric.

The following observations can be made for the BZIP2
benchmark analyzing the results in Table III:



BZIP2: ELF benchmark BZIP2: HTML benchmark BZIP2: TXT benchmark
L1-MI L1-RI L12-MI L12-RI L1-MI L1-RI L12-MI L12-RI L1-MI L1-RI L12-MI L12-RI

execution best 1.40% 4.92% 3.94% 5.90% 4.00% 5.31% 4.18% 6.98% 5.22% 7.30% 7.03% 10.98%
time average 0.74% 4.36% 3.38% 5.60% 2.74% 3.86% 3.32% 4.94% 2.34% 4.49% 4.08% 6.66%

worst 0.14% 3.36% 2.36% 4.87% 1.75% 2.47% 2.06% 3.46% -5.72% -4.15% -5.56% 1.95%
miss best -0.01% 6.11% 5.55% 9.00% 3.76% 5.94% 5.24% 8.92% 4.27% 8.45% 7.27% 11.38%
rate average -0.49% 5.59% 5.02% 8.51% 2.55% 4.15% 3.55% 6.41% 1.48% 4.82% 4.20% 8.26%

worst -1.40% 4.13% 3.52% 7.94% 1.08% 1.64% 1.92% 4.88% -11.00% -9.31% -11.18% 2.63%
energy best 1.64% 4.64% 3.55% 5.49% 4.58% 5.61% 5.09% 7.31% 4.71% 6.88% 6.07% 10.70%
requirement average 1.08% 4.13% 3.06% 5.23% 3.55% 4.53% 3.87% 5.29% 3.06% 4.93% 4.33% 6.98%

worst 0.59% 3.27% 2.17% 4.57% 2.34% 3.21% 2.60% 3.77% -4.53% -2.83% -4.33% 2.16%

Table III
EVOCACHE GENERALIZATION PERFORMANCE FOR BZIP2 TRAINED ON THE WIKIPEDIA GENETIC PROGRAMMING (GP) HTML PAGE. THE TEST
DATA ARE PARTITIONED INTO COMPRESSING LINUX BINARIES IN ELF FORMAT (bash, cpio, dbus-daemon, awk, sh, gawk, tar,
tcsh, vim, zsh), WEB PAGES IN HTML FORMAT (Ancient Egypt [W], Ancient Greece [W], Ancient Rome [W], Germany
[W], heise.de, Andrey Kolmogorov [W], sailinganarchy.com, spiegel.de, wired.com, slashdot.org) AND TEXT

FILES (rfc 2068, 2246, 845, 1000, 1001, 1002, 1005, 1008, 1009, 2658). DATA SETS MARKED WITH [W] HAVE BEEN
COLLECTED FROM WIKIPEDIA.ORG.

• EvoCaches generalize well and deliver for all test data
substantial performance improvements. The improve-
ments in execution time are up to 10.98% and the
reductions in energy are up to 10.70%.

• Having EvoCaches in both levels of cache (L1:I, L1:D
and L2:U) leads to higher performance gains than
having EvoCaches only in level one.

• The advantage of cache mapping functions evolved
from random mapping functions over mappings evolved
from modulo functions can be also observed when
evaluating the cache with test data and is even more
pronounced as in the training phase.

For testing EvoCaches on JPEG, we have selected ten
images from [16] and [17]. The detailed results are shown
in Table IV and can be summarized as follows:

• EvoCaches again generalize well with even larger
improvements in execution time (up to 14.31%) and
reductions in energy (up to 16.43%).

• The average performance when optimizing L1 caches
only is about 2% higher than when optimizing both
cache levels. This corresponds with the observation
made when training EvoCaches for JPEG where the
best training performance was reached by optimizing
L1 caches only. Consequently, the individual with best
test performance gains better test performance, even if
not being optimized additionally for the L2 cache.

• While the reductions in the miss rates are rather
high, the reductions in execution times are lower. This
demonstrates that for multiple levels of cache (or so-
phisticated processor architectures) the total miss rate
is not necessarily a suitable metric for quantitatively
determining a performance improvement.

The results of our experiments are summarized in Fig-
ure 6. The figure shows for both benchmarks, BZIP2 and
JPEG, and optimization scenarios the relative improvement
for EvoCaches in execution time, miss rate and energy
requirement over a modulo address mapping function.

L1-RI L12-RI
execution best 14.31% 12.96%
time average 12.73% 10.78%

worst 11.48% 9.12%
miss best 41.25% 40.35%
rate average 37.40% 37.19%

worst 31.64% 30.46%
energy best 16.43% 14.46%
requirement average 14.19% 11.93%

worst 12.53% 10.49%

Table IV
EVOCACHE GENERALIZATION PERFORMANCE FOR THE JPEG ENCODER

TRAINED ON THE SAMPLE IMAGE FROM THE JPEG6A SOURCE CODE
DISTRIBUTION.

BZIP2 JPEG
modulo random random

initialized initialized initialized
delay size delay size delay size

L1:I,D avg 4.10 13.50 4.63 16.94 4.38 15.13
max 6 19 7 22 7 22
best 5 18 4 18 6 19

L1:I,D avg 4.06 14.00 4.19 15.81 4.44 15.44
L2:U max 6 20 8 24 6 22

best 5 16 3 14 4 17

Table V
AREA AND DELAY PARAMETERS FOR THE EVOLVED RECONFIGURABLE

ADDRESS MAPPING FUNCTIONS.

The area (number of 4-LUTs) and the delay (depth of
the circuit) parameters for the resulting reconfigurable logic
circuits are presented in Table V. Besides the average and
maximal values, also the values for the fittest circuit which
has been used for testing is listed. These circuits show
depths between three and six LUTs. It has to be noted that
the circuits resulted from an evolutionary design process
and have thus not been optimized for area or delay. Delay
minimization could possibly further reduce the circuit’s
propagation time and thus the cache hit time.

V. CONCLUSION AND OUTLOOK

In this paper, we have presented EvoCaches that rely
on two main ideas. First, the function mapping an address
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Figure 6. Summary of the EvoCache generalization performance for
BZIP2 and JPEG. The data is for randomly initialized mapping functions.
The best, worst and average values are indicated for every optimization
scenario and metric.

to a cache line index is implemented by a small reconfig-
urable logic fabric. Second, the function is optimized by an
evolutionary algorithm with the goal to achieve a minimal
overall execution time with respect to a specific application.
We have defined different optimization scenarios, optimizing
split level one caches and, additionally, a unified level
two cache and conducted experiments with BZIP2 and
JPEG benchmarks. After evolving the mapping functions,
we have tested the best solutions on independent data sets
and evaluated the overall execution times, miss rates, and
energy requirements. Compared to conventional caches, we
have observed runtime improvements of up to 10.98% for
BZIP2 and up to 14.31% for JPEG and energy reductions
of up to 10.70% for BZIP2 and up to 16.43% for JPEG.

Future work will include the simulation of more bench-
marks and cache configurations. To this end, it will be desir-
able to considerably speed up the fitness evaluation as we are
currently limited by simulation time. Therefore we intend to
look deeper into the correlation between run-times and miss
rates with the goal to use the miss rate as performance metric
and thus avoid cycle-accurate simulation. As an alternative,
we will investigate whether trace-based simulation can be
used to derive reliable results.
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