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Abstract The evolvable hardware paradigm facilitates the construction of
autonomous systems that can adapt to environmental changes, degrading effects
in the computational resources, and varying system requirements. In this article,
we first introduce evolvable hardware, then specify the models and algorithms used
for designing and optimising hardware functions, present our simulation toolbox,
and finally show two application studies from the adaptive pattern matching and
processor design domains.
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1 Evolvable Hardware—An Introduction

In the last decades, natural computing methods which take problem solving princi-
ples from nature have gained popularity. Among others, natural computing includes
evolutionary computing. Evolutionary computing covers population-based, stochas-
tic search algorithms inspired by principles from evolution theory. An evolutionary
algorithm tries to solve a problem by keeping a set (population) of candidate solu-
tions (individuals) in parallel and improving the quality (fitness) of the individuals
over a number of iterations (generations). To form a new generation, genetically-
inspired operators such as crossover and mutation are applied to the individuals.
A fitness-based selection process steers the population towards better candidates.

Evolvable hardware (EHW) denotes the combination of evolutionary algorithms
with reconfigurable hardware technology and run-time optimisation to construct
self-adaptive and self-optimising hardware functions (circuits). The term evolv-
able hardware was coined by de Garis [1] and Higuchi [2] in 1993. The essence
of EHW is the usage of optimisation algorithms during the run-time of a system
to adapt its functionality to time-variant conditions. EHW is typically applied to
two classes of hardware functions. The first class comprises functions with a per-
formance that is dependent on the input data distribution, thus opening up the need
for self-adaptation. Functions that should withstand partial defects of the computa-
tional resources or react to changes in the resources form the second class of EHW
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compliant functions. Common to both classes is that the optimal solution is either
unknown, too cumbersome to compute a-priory, or too complex to be formalised as
a consolidated function.

The long-term goal of our work is the development of autonomous embedded
systems that implement hardware functions characterised by their functional quality
and resource demand [3]. To this, we rely on two concepts to achieve a flexible
adaptation: Firstly, an intrinsic evolutionary search process adapts the system to
slow changes in the environment. Secondly, radical changes in available resources
are compensated by replacing the operational circuit with a pre-evolved alternative
which meets the new resource constraints. To this end, we store at any time an
approximated Pareto front of circuit implementations.

In this article, we first discuss models and algorithms for the evolution of hard-
ware functions and then present the MOVES toolbox for development and simula-
tion of EHW. Finally, we focus on two applications of EHW.

2 Models and Algorithms

In this section, we review models and algorithms for evolving hardware. In partic-
ular, we discuss cartesian genetic programs (CGP) for representing digital circuits
and their extension to automated module creation and multi-objective optimisation.
Further, we point to the inherent trade-off between an efficient evolution and the
effort required to map evolved circuits to real hardware.

2.1 Cartesian Genetic Programs

A Cartesian Genetic Program (CGP) is a structural hardware model that arranges
logic cells in a two-dimensional geometric layout [4]. Formally, a CGP model con-
sists of nc × nr combinational logic blocks, ni primary inputs, and no primary out-
puts. A logic block has nn inputs and implements one out of nf different logic func-
tions of these inputs. While the primary inputs and outputs can connect to any logic
block input and output, respectively, the connectivity of the logic block inputs is
restricted. The input of a logic block at column c may only connect to the outputs of
blocks in columns c − l, . . . , c − 1 as well as to the primary inputs. The levels-back
parameter l restricts wiring to hardware-friendly local connections. More impor-
tantly, as only feed-forward connections are allowed, the creation of combinational
feedback loops is avoided. Figure 1a shows an example for a CGP model together
with its parameters. The model in this example has five columns, four rows, four
primary inputs, and two primary outputs.

Mutation is the commonly used evolutionary operator for CGP. Often formalised
as a one-point operator, mutation changes a gene which encodes a node’s func-
tion and input wiring with a certain probability. The straight-forward implementa-
tion of a crossover operator acts on the geometrical structure of the chromosome
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Fig. 1 (a) Cartesian genetic programming (CGP) model and (b) its extension to the automatic
search of reusable sub-functions

exchanging nodes and preserving their wiring. An n-point crossover divides the
parents’ chromosomes into n + 1 parts based on the numbering of the nodes. The
child’s chromosome is then constructed by alternatively selecting partial chromo-
somes from the parents.

A crucial property of CGP is that nodes which do not contribute to the primary
outputs remain in the chromosome and might be propagated through the genera-
tions. This property, termed neutrality, has been shown to improve significantly the
convergence of the search process [4], as it preserves possibly useful sub-functions
that can be reconnected to the genotype’s active structure by few mutations.

2.2 Modular CGP

In order to improve evolvability of functions with potentially hierarchically-
structured solutions, Walker et al. [5] applied the automatic search and definition
for reusable sub-functions (ADF) to CGP. The methodology tries to extend a geno-
type’s alphabet by adding more complex nodes to it. The new nodes, denominated
as modules, are composed from sub-programs of candidate solutions and are subject
to evolutionary selection pressure. The goal behind ADFs is the automatic search
of an appropriate functional set for a distinct application. Additionally, ADF aims
at the automatic increase of the functional complexity of the representation model.
This allows for the evolution to act on a more complex and expressive level, thereby
reducing an EA’s computational effort.

Figure 1b illustrates a potential modular CGP (MCGP) phenotype structure.
Along with the regular population of candidate solutions, MCGP propagates a set of
modules through the evolution, dynamically allocating and releasing them by com-
press and expand operators. The probability of module creation is lower than that of
module expansion, providing pressure towards modules contributing to more suc-
cessful candidate solutions. When a regular mutation operator hits a module node,
it selects randomly from five different actions: The module’s internal function can
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be mutated by the means of the standard CGP mutation operator, the input and out-
put wiring of a module can be altered similarly to wiring mutation of a basic node.
Finally, the number of inputs and outputs can be changed. For further details about
MCGP refer to Walker et al. [5] and Kaufmann and Platzner [6].

In our work, we have introduced advanced techniques for creating and prop-
agating modules in CGP as well as presented an MCGP cross-over operator [6].
Our age-based module creation prefers the aggregation of primitive nodes that per-
sisted unchanged for a large number of generations. The rationale behind this is
that such “aged” nodes directly or indirectly contribute to the genotype’s success
and should be composed into a module. Further, we have implemented cone-based
module creation that forms modules out of primitive nodes that form cones. Cones
are a widely-used concept in circuit synthesis, especially in the area of lookup-table
mapping for FPGAs, capsuling functionally related elements as a reusable entity.
We have evaluated our novel techniques and compared them to the module creation
approach presented in previous work. The results demonstrate the effectiveness of
age-based module creation. Cone-based module creation is even more effective but
only for regularly structured multiple output circuits such as multipliers. Finally,
we have outlined a crossover operator that selects a cone consisting of both prim-
itive nodes as well as modules in a source chromosome and copies this cone into
a destination chromosome. Using this novel crossover operator, we are also able to
apply multi-objective optimisers to MCGP as crossover allows for intra-population
information exchange.

2.3 Multi-objective Optimisation Using CGP

The motivation for multi-objective evolutionary optimisation (MOEA) of hardware
lies in the desired ability of an autonomous system to react quickly to changes in
the resources by instantiating an appropriately sized solution. This can be achieved
by exploiting a modern, Pareto-based MOEA, which optimises concurrently a set
of mutually non-dominating solutions. To verify this concept, we have added circuit
area and speed as objectives to be optimised [7]. However, multi-objective optimisa-
tion of CGP circuits shows a bad convergence behaviour which might be explained
by the fact the modern MOEAs are targeted at global optimisation. In contrast, pre-
viously known good CGP optimisation algorithms are single-objective local opti-
misers. To successfully employ a multi-objective heuristic to CGP optimisation, we
have extended a state-of-the-art MOEA, SPEA2 [8], to favour a subset of objectives.
The resulting algorithm performs similarly to a single-objective optimiser without
showing significant negative effects on the secondary objectives. We coined the new
algorithm Turtle SPEA2 (TSPEA2) [7, 9]. To improve the run-time on an embedded
system, we have implemented the computationally-demanding methods for preserv-
ing Pareto-front diversity as an FPGA circuit [10]. Additionally, we have developed
a periodisation scheme for single- and multi-objective EAs to combine global and
local search techniques [11]. We have shown that periodisation can significantly
improve the quality of the evolved Pareto-front approximation.
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2.4 Challenges of CGP

The main challenge of the CGP model when applying to real-world applications is
scalability. Similar to other EA variants, disproportion in the granularity of the rep-
resentation model functional blocks and application-inherent functional granularity
often results in excessive optimisation effort. As CGP in its original version evolves
solutions at the abstraction level of Boolean gates and single wires, it struggles to
cope with applications using numerical values and the corresponding mathematical
functions. In the last years, a number of approaches have been presented that address
this problem. One of them is function-level evolution which uses node functions of
coarser granularity and buses instead of single bit wires. We have done prelimi-
nary work on the implementation of a coarse-granular CGP using Virtex-5 DSP48E
blocks as functional nodes. An algorithmic approach to improve the evolvability
of CGP is to enable EAs to create hierarchical solutions by automatically seeking
reusable functions [6].

3 Development and Simulation Tools

We have designed the MOVES toolbox [3, 7, 12] for evolutionary design of digital
circuits. The toolbox comprises a framework of different digital logic representation
models, single and multi-objective optimisers and a set of evolutionary operators.
This enables us to easily deal with the setup, control, visualisation, analysis, and
distribution of experiments. The overall framework is developed in Java and is, thus,
platform-independent. Additionally, for experiments on embedded systems without
full-fledged operating systems, some parts such as the CGP representation model
and variants of single and multi-objective optimisers are also available in C without
using dynamic memory allocation.

The key feature of the MOVES framework is the separation of the different func-
tionalities required for experimenting with hardware evolution. Consequently, the
modules of the framework are divided into two major groups, modules that con-
stitute the evolutionary optimisation techniques and modules that serve the exper-
imentation process, including experiment setup and control, statistic analysis, and
visualisation.

An excerpt form the MOVES toolbox structure is shown in Fig. 2 and includes
the hardware representation models, the evolutionary algorithms, and the evolu-
tionary operators. This separation is suitable for all population-based optimisation
techniques that apply evolutionary operators, e.g. genetic programming, genetic al-
gorithms, and evolutionary techniques. Within the representation models, the frame-
work implements the regular CGP, its extension to ADFs—the MCGP, and a coarse-
granular CGP model, based on Xilinx Virtex-5 DSP48E blocks as functional ele-
ments. The evolutionary algorithms comprise regular GA, (μ{+, }λ) ES, NSGAII,
SPEA2, TSPEA2, μGA, OMOEA, and IBEA2 in the hyper-volume and the ε vari-
ants. The evolutionary operators can be formalised in a general form, e.g. selec-
tion operators, or in a form specific to the representation model, e.g. the fitness
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Fig. 2 Excerpt from the MOVES evolvable hardware toolbox structure

evaluation, mutation, and crossover operators. Along with the known mutation and
crossover operators, the MOVES framework also implements our novel cone-based
and age-based selection and crossover techniques [6].

Within the MOVES framework, an experiment is defined by two human-readable
configuration files; one specifies the evolutionary optimiser and another one the ex-
periment setup. The evolutionary optimiser configuration includes the chosen rep-
resentation model, evolutionary operators, and evolutionary algorithm. The exper-
iment setup configuration comprises termination conditions, visualisation settings,
and the logging frequency. The configuration can be provided as regular text files
or, alternatively, be entered via the framework’s graphical user interface.

Experiments can be run interactively or in batch mode. In the interactive mode,
the user can pause, resume, or stop the simulation at any time. Generally, the pa-
rameters controlling the experiment setup can be modified during the experiment.
For example, the experiment can be executed step-wise or continuously until some
of the termination conditions are reached. The user is free to switch between these
modes at any time. It is also possible to save the current search state and reload it
later on to analyse it. These features are extremely useful to debug and verify new
representation models and their corresponding operators, and to tune the parameters
of the evolutionary algorithm. The batch mode is used for an unattended simulation.
Statistical data can be gathered during the experiment and exported to a text file for
later processing.

There are two visualisation tools, the visualisation of the evolved candidate so-
lutions and the visualisation of the evolutionary optimisation process. When visu-
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alising a genotype, the user can modify the viewed data, e.g. to manipulate input
data or even change the circuit’s structure and function. The standard visualisation
of the evolutionary optimisation process displays the progress of the best fitness and
the population’s average fitness over the generations. This is most useful for single-
objective optimisers. In experiments with multi-objective optimisers, we can display
the progress of all individual fitness values, and the two-dimensional projections of
the Pareto-fronts. The visualisations can be done either during an experiment run or
offline using previously saved experiment log streams.

For an evolvable hardware experiment, usually dozens of simulation runs are re-
quired to evaluate different parameter sets. As evolutionary algorithms are stochas-
tic optimisation methods, several runs with different random number seeds need to
be conducted to derive the average behaviour. Such experiments can be tedious to
configure and take a very long runtime. The single experiments, however, are inde-
pendent of each other and amenable to parallel execution. The MOVES framework
is able to automatically create a set of experiments where parameters are varied
in specified intervals and with defined step sizes, and to execute all simulations as
batch jobs on a compute cluster. We employ the grid software Condor that distributes
the jobs on the computing nodes in the cluster, monitors the node’s activities, and
relocates the jobs if it becomes necessary.

4 Applications

To demonstrate our research on evolvable hardware, we select two applications cov-
ering the embedded and the high-performance-computing worlds. The first part of
this section presents experiments on the classification accuracy of a run-time re-
configurable FPGA pattern matching architecture [13]. At this, the focus is raised
towards classification accuracy behaviour and recovery, when dynamically chang-
ing the amount of on-chip resources used by the architecture. The second part shows
a way to optimise the memory-to-cache address mapping function by the means of
EHW. Interposing a small reconfigurable array of look-up tables (LUTs) between
the CPU’s load/store unit and the cache logic allows to improve the overall execu-
tion time of a program.

4.1 Flexible EHW Pattern Matching Architectures

The Functional Unit Row (FUR) architecture for classification tasks was first pre-
sented by Glette in [14, 15]. FUR is an architecture tailored to online evolution
combined with fast reconfiguration. To facilitate online evolution, the classifier ar-
chitecture can be reconfigured through partial reconfiguration and the behaviour can
be controlled through configuration registers. Figure 3a shows the general organi-
sation of the classifier architecture [16, 17]. For C categories the FUR architecture
consists of C Category Detection Modules (CDMs). A majority vote on the outputs
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Fig. 3 (a) Functional Unit Row (FUR) architecture; (b) Category Classifier (CC); (c) Functional
Unit (FU)

of the CDMs defines the FUR architecture decision. In case of a tie, the CDM with
the lower index wins. Each CDM contains M Category Classifiers (CCs), basic pat-
tern matching elements evolved from different randomly initialised configurations
and trained to detect the CDM’s category. A CDM counts the number of activated
CCs for a given input vector, thus the CDM output varies between 0 and M .

In [13], we define a single CC as a row of Functional Units (FU), shown in
Fig. 3b. The FU outputs are connected to an AND gate such that in order for a CC
to be activated all FU outputs have to be 1. Each FU row is evolved from an initial
random bitstream, which ensures a variation in the evolved CCs.

As depicted in Fig. 3c, an FU selects a single value from the input vector and
compares it to a constant. While any number and type of functions could be imag-
ined, Fig. 3c illustrates only two functions for clarity. Through experiments, greater
than and less than or equal have shown to work well, and intuitively this allows for
discriminating signals by looking at the different amplitudes.

The FUR architecture is parametrised by three values: the number of categories,
FU rows in a CDM, and FUs in a FU row. We assume the numbers of categories
and FUs in a FU row as constants, reconfiguring the number of FU rows in a CDM.
For a sequence I = {i1, i2, . . . , ik}, we evolve a FUR architecture having ij FUs
per CDM, then switching to ij+1 FUs per CDM and re-evolving the architecture
without flushing the configuration evolved so far.

For our investigations, we rely on the UCI machine learning repository [18] and,
specifically, on the Thyroid benchmark. The Thyroid data set splits into three groups
with cardinalities of 6.666, 166 and 368 samples. To evolve a FUR classifier, we
employ a 1 + 4 ES scheme. With a mutation operator changing three genes in every
FU row, the configuration for a complete FUR architecture is evolved during a single
ES run. In preparation for the experiments on the reconfigurable FUR architecture,
we investigate the FUR’s general performance and over-fitting effects by evaluating
it on a set of useful FU rows per CDM and FUs per FU row configurations. To
this, we evaluate the FUR-architecture on combinations of 2 to 20 FUs per FU row
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Fig. 4 Reconfigurable Thyroid benchmark: Changing the classifier’s resources (number of FU
rows) during the optimisation run. The first diagram shows the training accuracy, the second dia-
gram the difference between the training and test accuracy and the last diagrams shows the changes
in the FU rows

and 2 to 80 FU rows. In these experiments, the FUR architecture shows error rates
which are very close to the error rates of the best known conventional classification
algorithms [13].

Figure 4 visualises the FUR’s classification behaviour under changes in the avail-
able resources while being under optimisation. We execute a single experiment and
configure a FUR architecture with 4 FUs per FU row and change the number of FUs
every 40 000 generations. We split the data set into disjoint training and test sets
and start the training of the FUR classifier with 40 FU rows. Then, we gradually
change the number of employed FU rows to 38, 20, 4, 3, 2, 1, 20, 30, 40 execut-
ing altogether 400 000 generations. We observe the following: the training accuracy
drops significantly for almost any positive and negative change in the number of FU
rows and recovers subsequently. The recovery rate of the test accuracy depends on
the amount of FU rows. While for periods with few FU rows the recovery rate is
slow, for periods with 20 and more FU rows the evolutionary process manages to
recover the test accuracy much faster. Additionally, for configurations with very few
FU rows, the test accuracy begins to deteriorate. This can be observed in Fig. 4 at
generations 120 000 to 280 000.

In summary, as long as the FUR configuration contains enough FU rows, the
FUR’s test accuracy behaviour is stable during reconfigurations. Additionally, more
FU rows leverage faster convergence.
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Fig. 5 The evolvable cache (EvoCache) architecture

4.2 Optimising Caches: A High-Performance EHW Application

Cache memories are important and well-investigated elements of any modern pro-
cessor’s memory hierarchy. While carefully designed and balanced cache hierar-
chies greatly improve processor performance, they also require substantial amounts
of energy. The key innovation of our evolvable cache (EvoCache) is to make the
function that maps memory addresses to cache indices programmable [19].

The EvoCache approach is presented in Fig. 5. A very small reconfigurable logic
fabric implements a hashing function that maps a part of a memory address to a
cache line index. The hashing function is optimised to achieve a low overall ex-
ecution time for a specific application. The algorithmic methods for optimisation
originate in the EHW domain. Our architecture provides a mapping function mem-
ory that can store several configurations for the reconfigurable logic fabric, which
allows for quickly switching to different memory-to-cache address mappings. To
prevent aliasing, i.e. storing several potentially dirty copies of the same physical ad-
dress at different indices in the cache, we flush the cache when a new mapping is
activated.

Including EvoCaches into a processor architecture will increase the logic area,
the hit time, and the overall number of memory cells for the cache. The increase
in logic area is due to the reconfigurable fabric itself which is assumed to be small
as the fabric comprises only a handful of look-up tables (LUTs). Additionally, we
require a mapping function memory to store the configurations for the logic fab-
ric. The size of a configuration is architecture dependent. The architecture used for
this case study comes with a configuration size of 151 bytes. The increase of the
cache size is due to the fact that the flexibility in the hashing function requires us
to store the full address excluding block and byte offsets as tags in the cache. The
additional overhead depends on the actual cache configuration. For example, a con-
ventional 4-way set associative cache of 16 KByte data with block size of two words
for a byte-addressable architecture with 32 bit addresses comes with an overhead of
25.56%, where the overhead includes for each cache block the valid bit and the tag.
Switching to an EvoCache of same data size and organisation increases the overhead
to 34.88%. We think this overhead is bearable since today most processor designs
are not restricted by silicon area but by performance and performance per energy.
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The increase in hit time is more critical. The additional delay depends strongly on
the depth of the LUT network. This depth can be restricted in the optimisation pro-
cess to satisfy timing constraints. Moreover, for many embedded processors with
clock frequencies well below one GHz, the pressure on the timing is moderate.
High-performance processors, on the other hand, have several levels of cache where
only the first level is optimised for hit time. Here, the EvoCache approach can still
be applied to higher level caches.

For the experiments, we leverage our MOVES toolbox [12], which allows us to
generate a set of jobs for fitness evaluation and distribute them on a compute cluster.
For system simulation we rely on SimpleScalar [20] as it is easily extensible and it
models a variant of the widely-used MIPS instruction set architecture. SimpleScalar
allows us to establish a fine-grained energy metric, based on the memory and cache
access patterns. To this, our energy estimation model splits the energy demand into a
static and a dynamic part. We derive the static and access energies from the CACTI
cache model, the standard V58C2256 DDR SDRAM module, and a 200 MHz ARM
at 90 nm, respectively.

To evaluate the EvoCache concept, we have configured a processor and its mem-
ory hierarchy in a configuration similar to those of current ARM processors [21].
The configuration includes a split first level cache and a unified second level cache.
The L1 caches are 2-way associative with a hit latency of one cycle, 64 sets and a
block size of 16 bytes. The L2 cache has an associativity of four ways with a hit
latency of 6 cycles, 128 sets and a block size of 32 bytes. The memory bus between
the L2 cache and the external memory is 8 bytes wide. The external memory shows
an access time of 18 cycles and a 2-cycle delay for consecutive data transfers in
burst mode. Hence, the miss penalty for the L2 cache amounts to 24 cycles. Using
this configuration, a conventional cache system for a byte-addressable architecture
with 32 bit addresses has a 22 bit tag and a 6 bit index for the L1 caches and a 20
bit tag and 7 bit index for the L2 cache, respectively. For an EvoCache, the orig-
inal tags and indices merge into a single tag of 28 and 27 bits for the L1 and L2
caches, respectively. We have evolved mapping functions for two optimisation sce-
narios. In the first optimisation scenario, only the first level caches (LI:I and L1:D)
are EvoCaches with evolved mapping functions while in the second scenario all
three caches receive evolved mapping functions. We simulate the execution of two
benchmarks, bzip2 (version 1.0.4) and jpeg (version 6a). For each combination
of benchmark and optimisation scenario, we first evolve a mapping function on a
training data set. This optimisation step has been repeated for 16 times to compute
the average behaviour. Then we evaluate EvoCaches using the best evolved bzip2
and jpeg circuits on a large, diverse set of test data disjoint to the training data,
This time, we additionally log the miss rates and the estimated energy consump-
tions.

Figure 6 summarises EvoCaches generalisation results. The following observa-
tions can be made here: Compared to a conventional cache of equal size, Evo-
Caches generalise well and deliver up to 10.98% execution time improvement and
up to 10.70% reduction in energy for the bzip2 benchmark. The jpeg benchmark
gains even higher improvements with up to 14.21% in the execution time and up
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Fig. 6 EvoCache
generalisation performance
for bzip2 and jpeg

to 16.43% in the energy consumption. Interestingly, bzip2 profits from optimisa-
tion of L1:I, L1:D, and L2:U caches, while jpeg suffers from the optimisation of
the second level cache. Noteworthy for the jpeg benchmark is the disproportion
in the miss-rate gain. While the execution time improves by roughly 11% to 12%,
the miss-rate gains about 35% improvement. This demonstrates that for multiple
levels of cache (or sophisticated processor architectures) the total miss rate is not
necessarily a suitable metric for quantitatively determining a performance improve-
ment.

5 Conclusion

This article gives a short introduction to evolvable hardware, presents an overview
over our models and tools for evolutionary digital circuit design and concludes with
two case studies. In the first case study, we leverage the FUR classifier architecture
for creating evolvable hardware systems that can cope with fluctuating resources.
We demonstrate that the FUR’s generalisation performance is robust to changes in
the available resources as long as a certain amount of FU rows is present in the sys-
tem. Furthermore, the FUR’s capability to recover from a change in the available
resources benefits from additional FU rows. In the second case study, we present
the EvoCache concept which relies on two main ideas. First, the memory-to-cache-
mapping function is implemented by a small reconfigurable logic fabric. Second, the
function is optimised by an evolutionary algorithm with the goal to achieve a min-
imal overall execution time with respect to a specific application. We evaluate the
concept on the bzip2 and jpeg benchmarks. Compared to conventional caches,
we observe runtime improvements of up to 10.98% for bzip2 and up to 14.31%
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for jpeg and energy reductions of up to 10.70% for bzip2 and up to 16.43% for
jpeg.
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