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ABSTRACT
The choice of an appropriate hardware representation model
is key to successful evolution of digital circuits. One of
the most popular models is cartesian genetic programming,
which encodes an array of logic gates into a chromosome.
While several smaller circuits have been successfully evolved
on this model, it lacks scalability. A recent approach towards
scalable hardware evolution is based on the automated cre-
ation of modules from primitive gates.

In this paper, we present two novel approaches for mod-
ule creation, an age-based and a cone-based technique. Fur-
ther, we detail a cone-based crossover operator for use with
cartesian genetic programming. We evaluate the different
techniques and compare them with related work. The re-
sults show that age-based module creation is highly effective,
while cone-based approaches are only beneficial for regularly
structured, multiple output functions such as multipliers.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program Synthesis

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Cartesian genetic programming (CGP), embedded cartesian
genetic programming (ECGP), automatically defined func-
tions (ADFs), module acquisition, crossover operator

1. INTRODUCTION
Evolvable hardware [5, 9] combines evolutionary algori-

thms with reconfigurable hardware in order to construct
smaller, more robust, or even self-adaptive and self-optimi-
zing hardware systems. The common denominator of all
evolvable hardware approaches is the application of evo-
lutionary techniques directly at the hardware level. Here,
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hardware means both digital and analog electronic circuits,
and the hardware level comprises all models of hardware,
from configuration bitstreams for reprogrammable devices
over netlists of gates to behavioral descriptions. Evolution-
ary techniques have been shown to be able to generate as-
tonishing circuits that are totally different from classically
engineered circuits, and sometimes even superior [24]. More-
over, for applications with time-varying specifications very
promising initial results have been achieved that indicate
the potential of evolutionary techniques to construct self-
adapting systems. Examples include evolved controllers for
prosthetic hands and robot navigation [8].

The choice of a suitable hardware representation model,
i.e., the encoding of a hardware circuit into a chromosome, is
key to a successful application of evolutionary design tech-
niques. On one hand, the representation determines the
size and the structure of the search space which affects the
efficiency of the evolutionary operators. Using a low-level
representation, e.g., logic gates and wires, the chromosome
length grows rapidly with the circuit size. This might ren-
der evolutionary techniques infeasible and is known as the
scalability problem. On the other hand, high-level represen-
tations, e.g., behavioral descriptions, require substantially
more effort to map an individual to the target hardware.
The majority of related work in evolvable hardware focused
on creating combinational Boolean functions. Typically, the
chromosome encodes a netlist with a number of logic nodes
and an interconnect. A rather popular representation model
arranges the logic gates in an array which resembles the ar-
chitecture of current programmable hardware devices, such
as field-programmable gate arrays (FPGAs). As most au-
thors implemented versions of genetic programming on this
model, the approach has been termed cartesian genetic pro-
gramming (CGP).

For larger and real-world applications, the CGP model
in combination with fine-grained logic lacks scalability. The
excessive chromosome lengths lead to extremely large search
spaces. To tackle the problem of scalability, a number of ap-
proaches have been proposed which can be classified along
three dimensions: The first dimension corresponds to the
level of the hardware representation. To improve scalability
we should give up too hardware-friendly structural models
and move towards behavioral models. Orthogonally to that,
we see the dimension of object granularity. We can evolve
hardware using gates and wires, arithmetic functions and
buses, and eventually complete intellectual property cores
and networks on chip. The third dimension relates to incor-
porating knowledge into the evolutionary process. We can
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Figure 1: Cartesian genetic programming (CGP)
model and its parameters

either evolve in a blind manner or try to leverage domain or
problem-specific knowledge. An example for using problem-
specific knowledge is demonstrated in [26]. There, the fact is
exploited that multiplier circuits usually compute products
in the first few logic levels and add partial sums in later lev-
els. Consequently, the representation model was constrained
such that and gates were preferred in the first columns of the
logic array and adders in the remaining columns.

The main contribution of this paper is the introduction
of novel techniques for identifying and dealing with mod-
ules, leveraging a previously discussed approach for module
creation in the CGP model [28]. We present and evaluate
two module creation techniques, called age-based and cone-
based module creation. Further, we develop and evaluate a
novel cone-based crossover operator to be used with a ge-
netic algorithm on the CGP model. In a sense, we address
all three dimensions discussed above. First, we are giving up
the structural, hardware-friendly aspects of the CGP model.
Second, modules are building blocks of coarser granularity,
albeit generated in an automated fashion. Finally, our cone-
based approach represents circuit design knowledge.

The paper is structured as follows: In Section 2 we intro-
duce the cartesian genetic programming model as well as its
extension to automated module creation and review related
work on these models. Our novel methods for improving
the automated module creation and propagation process are
presented in Section 3. Section 4 describes the experimental
setup to evaluate the proposed techniques and presents and
discusses our empirical findings. Finally, we summarize and
point to future work in Section 5.

2. RELATED WORK
In this section we review related work on genetic program-

ming models for digital circuit evolution. In particular, we
discuss cartesian genetic programs for representing digital
circuits and their extension to automated module creation.
Further, we point to the fundamental trade-off between an
efficient evolution and the effort required to map evolved
circuits to real hardware.

2.1 Cartesian Genetic Programs
A cartesian genetic program (CGP) is a structural hard-

ware model that arranges logic cells in a two-dimensional
geometric layout [19, 18]. In contrast to a genetic program
[13, 14] which relies on trees to represent evolved functions, a
CGP essentially is a restricted directed acyclic graph (DAG).
The restrictions are posed by the array structure which lim-
its the number of overall logic cells and the depth of an

evolved circuit.
Formally, a CGP model consists of nc×nr combinational

logic blocks, ni primary inputs, and no primary outputs.
A logic block has nn inputs and implements one out of nf

different logic functions of these inputs. While the primary
inputs and outputs can connect to any logic block input
and output, respectively, the connectivity of the logic block
inputs is restricted. The input of a logic block at column
c may only connect to the outputs of blocks in columns
c− l, . . . , c− 1 as well as to the primary inputs. The levels-
back parameter l restricts wiring to hardware-friendly local
connections. More importantly, as only feed-forward con-
nections are allowed the creation of combinational feedback
loops is avoided. Figure 1 shows an example for a CGP
model together with its parameters. The model in this ex-
ample has five columns, four rows, four primary inputs, and
two primary outputs.

An individual circuit is defined by its chromosome (geno-
type). The length of a chromosome is constant and given by
nc · nr(nn + 1) + no integer values. Each logic block in the
array is characterized by nn + 1 values, one for each input
and one for the logic function. Additionally, an no-tuple of
values selects the block outputs that are connected to the
primary outputs of the circuit. The logic block genes are
mapped to the array in order of their position within the
chromosome. Consequently, a CGP implicitly encodes the
placement of logic blocks.

CGP models have been used with different sets of node
functions to evolve a variety of digital circuits. Simple logic
gates have been used to evolve logic and arithmetic circuits
such as adders, parity functions, comparators and multipli-
ers [27, 17], hashing functions [4], as well as controllers for
prosthetic hand control [10, 25] or robot navigation [23, 11,
15]. Higher-level functional elements such as adders and
multipliers have been applied to evolve more complex signal
processing applications, for example in data compression [20]
or cell scheduling [16].

Further, CGP models have been used with different evolu-
tionary strategies, from classic genetic algorithms, e.g., [4],
to evolutionary strategies, e.g., [28, 29]. An often-used mu-
tation operator on the CGP model is one-point mutation.
One-point mutation randomly selects a node and modifies
either the node function or one node input. If the function
is mutated, a new function is chosen from the function set
randomly. If an input is modified, one of the node’s inputs
is ripped up and reconnected to the output of a randomly
chosen node in one of the previous columns or to a primary
input. The straight-forward implementation of a crossover
operator acts on the geometrical structure of the chromo-
some. In the case of uniform crossover, a new individual is
created by selecting its nodes from the corresponding geo-
metrical node positions of two parents with equal probabil-
ity. An n-point crossover divides the parents’ chromosomes
into n+ 1 parts based on the numbering of the nodes. The
child’s chromosome is then constructed by alternatively se-
lecting partial chromosomes from the parents.

In CGP, nodes which do not contribute to the primary
outputs remain in the chromosome and might be propagated
through the generations. This property, termed neutrality,
has been shown to improve the convergence of the search
process [18]. The main problem with the CGP model is
scalability. In the last years, a number of approaches have
been presented that address this problem. One of them is



function-level evolution which uses node functions of coarser
granularity and buses instead of single bit wires, e.g., in [22,
20, 16]. Another approach seeks to automatically evolve
such coarse-grained blocks (modules) from primitive func-
tions. While techniques for the automated creation of mod-
ules have been applied in genetic programs for some time,
their use in CGP models has been demonstrated only re-
cently [28]. This technique is described in Section 2.3 in
more detail.

2.2 FPGA Mapping
An intriguing feature of the original CGP model is its

closeness to FPGA hardware. As CGP uses logic cells with
one output and implicitly encodes placement, the actual pro-
cess of mapping an evolved chromosome to a lookup-table
based FPGA reduces to routing and bitstream generation.
While most related work in CGP aims at evolutionary cir-
cuit design where hardware mapping is required only once
after an appropriate circuit has been evolved, there are two
cases for which an efficient FPGA mapping is of utmost im-
portance. The first is the use of FPGAs as accelerators to
speed up the fitness evaluation, e.g., in [6]. The second and
presumably more challenging one is on-chip evolution [7,
12]. However, there is a lack of open FPGA bitstream ar-
chitectures which makes the creation of custom routing and
bitstream generation tools a research challenge on its own.
For that reason, several researchers resorted to virtual FP-
GAs and implemented routing by controlling multiplexers
that select between different datapaths [21, 6].

Generally, there exists a trade-off between the chromo-
some length and thus the efficiency of evolution, and the ef-
fort needed for mapping a chromosome to an FPGA. Given
modern FPGA architectures and their corresponding design
tools, it can be doubted whether the implicit encoding of
placement as done in CGP is actually useful. As discussed in
[1], CGP encodes information that influences the character-
istics of the phenotype (FPGA circuit), but does not effect
the fitness (combinational behavior). This could be seen as a
source of inefficiency. This position is underlined by recent
work that resorts to a one-row CGP model, e.g., [30]. In
the one-row CGP model node inputs are allowed to connect
to any previous node and the primary inputs, i.e., l = nc.
In comparison to an array of nodes, the one-row approach
features higher compactness. As an example, consider the
evolution of a one output function with three logic blocks
connected in a series. To be able to evolve such a function
with the original array model, we have to provide at least
three columns of nodes, whereas in the one-row model we
can afford an overall smaller number of nodes. The reduced
chromosome length of the one-row model makes the evolu-
tionary operators more efficient. While the one-row model
gives up the implicit encoding of placement information in
the chromosome and thus makes FPGA mapping more in-
volved, it still shows important properties of the original
array-based CGP model, including a bounded number of
nodes and bounded depth, as well as neutrality.

Recently, a crossover operator for the one-row CGP model
was shown in [2]. This crossover operator requires to map
the CGP chromosome to a string of real values. To that
end, the nc node numbers are mapped to nc intervals in
[0, 1], and the nf functions are mapped accordingly. The
operator acts on two strings of real values between [0, 1] and
creates a child by a linear combination of the parents’ values.

The authors observed an improved initial convergence rate
of the optimization process and presented a scheme with an
adaptive crossover rate.

2.3 Automated Module Creation
In [28], a technique for automated module creation in the

one-row CGP model was introduced. Modules are composi-
tions of primitive node functions which are Boolean gates.
The resulting hardware representation model has been term-
ed embedded CGP (ECGP). The number of primitive nodes
of a module is restricted by lower and upper bounds. A mod-
ule must have at least two inputs and one output. ECGP
models are non-hierarchical in the sense that modules can
not contain other modules.

The automated creation and use of modules is governed
by three operators: compress, expand and module muta-
tion. Compression replaces a number of primitive nodes by
a newly created module. All inputs to module nodes that
originate from non-module nodes or primary inputs become
module inputs, and all outputs of nodes in the module that
target non-module nodes or primary outputs become mod-
ule outputs. The function and routing of nodes within the
module remain unchanged. Hence, applying the compress
operator to a chromosome does not change its fitness. Im-
portantly, in [28] nodes with subsequent node numbers in
the one-row CGP representation are selected to form a new
module. As a node can connect to any previous node and
the primary inputs (l = nc), the compress operator basi-
cally selects nodes randomly. Expand is the reverse process
of compress and replaces a module with its primitive nodes,
again leaving the node functions and the routing unchanged.

A module in the evolved circuit points to a corresponding
module description. The module descriptions are treated as
separate and self-contained sub-genotypes which are stored
in a list at the end of the ECGP chromosome. Multiple mod-
ules in the circuit may refer to the same module description,
which effectively enlarges the set of available node functions.
Modules created by compress are denoted as type I modules.
Additionally, modules can also be created by the one-point
mutation operator applied to primitive nodes. One-point
mutation cannot create a new module description but it can
replace a primitive node function with a reference to one of
the already created modules in the modules list. Such mod-
ules are denoted as type II modules. Only type I modules
can be expanded and only type II modules can be mutated
by the one-point mutation operator. The module descrip-
tions themselves can be modified by the module mutation
operator which is essentially a standard CGP mutation oper-
ator, except that it operates on module descriptions rather
than on the overall chromosome and can additionaly add
and remove modules inputs and outputs.

3. ADVANCED TECHNIQUES
In our work we leverage ECGP, the hardware represen-

tation model introduced in [28]. A circuit is described as
a DAG with a restricted number of nodes. The chromo-
some encoding relies on the one-row CGP approach where
all nodes are brought into a linear order and connections,
while limited to feed-forward wires, can span the entire row.
Figure 2 shows an example for such a circuit. Some of the
nodes are primitive node functions (nodes f5, f6, f8, f9, and
f10), and some are modules (nodes m7 and m11) which refer
to a corresponding module description. While we implement
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Figure 2: ECGP hardware representation model

the one-row CGP model to encode chromosomes, the graph-
ical circuit representation of the DAGs we use in this paper
is column-oriented. Each column represents a new level of
logic, with the exception of modules that can contain sev-
eral logic levels themselves. The order of nodes, primitive
ones and modules, in the linearized one-row CGP model is
uniquely determined by the node numbers. After applying
compress and expand operators we adapt the node num-
bering to ensure that the following property always holds:
Given any two nodes (primitive nodes and modules) hi and
hj with i < j, an input of hi can never connect to hj .

In this section, we introduce three new techniques for iden-
tifying and dealing with modules. The first two techniques
are age-based and cone-based module creation and try to
improve the previous module creation technique which basi-
cally selects primitive nodes randomly. Then, we investigate
a cone-based crossover operator which allows us to experi-
ment with a genetic algorithm instead of previous work’s
1 + λ evolutionary strategy.

3.1 Age-based Module Creation
Age-based module creation aggregates primitives nodes

that have persisted in the chromosome for a higher number
of generations. The rationale behind age-based module cre-
ation is that aged nodes are likely to contribute directly or
indirectly to an individual’s success and should therefore be
preferred over randomly selected nodes.

We assign to each primitive node fi an attribute age(fi).
The age is incremented by one in each generation and set
to zero when the node is selected for mutation or compres-
sion. The age of primitive nodes within modules remains
unchanged; modules themselves do not have an age. We
form module candidates by aggregating primitive nodes, re-
stricting the number of nodes by lower (nmin) and upper
bounds (nmax). The average age of a module candidate mj

is then given by

age(mj) =

P
fi∈mj

age(fi)

|mj |

In our current implementation of the age-based module cre-
ation technique we use two-stage binary tournament to se-
lect a module that is actually created. That is, we generate
a module candidate by following procedure: First, we select
a random primitive node fi and a number of primitive nodes

n, nmin ≤ n ≤ nmax, randomly. Then, we extend the mod-
ule from fi to nodes with smaller node numbers until we hit
a module or aggregate exactly n primitive nodes. We create
another module using a different random primitive node fi

and draw the one with higher average age. If both modules
have the same average age, we draw one module randomly.
This step is repeated once to derive the final module.

We have also experimented with selecting the module can-
didate with maximum average age. This requires the forma-
tion and evaluation of a larger number of module candidates.
For example, consider the circuit shown in Figure 2 with its
five primitive nodes and two modules. As the encoding uses
the one-row CGP model, there are the following three mod-
ules of size two: (f10, f9), (f9, f8), (f6, f5), and one module
of size three: (f10, f9, f8). However, picking the module with
maximum average age has proven inferior to the two-stage
binary tournament scheme for all test problems. An expla-
nation for this lies in the fact that maximizing average mod-
ule age tends to generate modules with a very small number
of high-aged nodes. It seems that while using node age as a
guide to steer module creation is highly effective (see Section
4), the technique is rather sensitive to the size of modules. A
deeper investigation of this dependency remains to be done
in further work.

3.2 Cone-based Module Creation
Both age-based module creation as well as the original

module creation described in [28] aggregate primitive nodes
into modules without taking the connections between nodes
into consideration. In contrast, cone-based module creation
aggregates only primitive nodes that are within a circuit
structure called cone. Cones are a widely-used concept in
circuit synthesis, especially in the area of lookup-table map-
ping for FPGAs (see, for example, [3]). Given a node fr in
the DAG, a cone rooted at fr consists of fr itself plus some
predecessor nodes such that for any node fi in the cone there
exists a path from fi to fr that is entirely in the cone. For
example, in Figure 3(a) the node set (f11, f9, f8) forms a
cone. Note that while a cone has a distinct root node fr, it
can have several outputs. The rationale behind cone-based
module creation is that many useful substructures in classi-
cally engineered circuits are cones, e.g., the sum and carry
functions of a full adder.

To generate module candidates, we randomly select a prim-
itive node fi and create a cone rooted at fi with a number
of nodes randomly chosen between nmin and nmax.

One subtlety in generating cones is that we have to avoid
what is called reconvergent paths in logic synthesis. To dis-
cuss several subtypes of cones consider again the circuit in
Figure 3(a). The node set (f11, f9, f6) is called a fan-out free
cone because the fanout (output connections) of every node
except the root node stay within the cone. Such cones are
certainly safe candidates for module creation. The node set
(f11, f9, f8, f5) does not form a fan-out free cone, as the out-
puts of f5 and f8 leave the cone. Nevertheless, this node set
forms a valid module. In contrast, the node set (f10, f8, f5)
which is highlighted in Figure 3(a) does not form a valid
module as the output of f5 leaves and reenters the cone.
If this cone was turned into a module the resulting circuit,
shown in Figure 3(b), would contain a combinational feed-
back loop. The path formed by nodes (f5, f7, f10) is called
reconvergent with respect to the cone (f10, f8, f5).

Reconvergent paths are specific to the cone-based module
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creation technique. Neither the age-based technique nor the
original method of [28] can create such paths. Compared
to module creation methods in [28], which relies on contigu-
ous node numbers, we are using breadth first search starting
with the cone’s root node to avoid reconvergent paths. Re-
suming the example of Figure 3(a), a cone of size 3, rooted
at node f10 would be formed by the nodes (f10, f7, f8).

3.3 Cone-based Crossover
In order to compare genetic algorithms to the previously

applied 1 + λ evolutionary strategies we have developed a
cone-based crossover operator. Our genetic algorithm uses
the ECGP hardware representation model and the same op-
erators as described in [28], including compress and expand.
Additionally, we employ a crossover technique that gener-
ates a recombined chromosome by transplanting a cone of a
donor chromosome into a clone of a recipient chromosome.

In the first step, we form a cone in the donor chromosome
by randomly selecting a root node and a size between nmin

and nmax. This procedure is similar to the cone-based mod-
ule creation of Section 3.2 except that we treat both primi-
tive nodes and modules as atomic nodes. Note that at this
point, a cone can contain modules. In the second step, we
randomly select a root node in the recipient and try to form a
cone of exactly the same size as the donor’s cone. Depending
on the actual DAGs, the resulting cone of the recipient can
be smaller than the donor’s cone. The third step comprises
the formation of two sets, set p that contains nodes of the
donor’s cone which have output connections to nodes outside
the cone, and another set q that contains the nodes of the
recipient which connect to nodes within the recipient’s cone.

Figure 4 displays an example. The donor’s cone consists of
three nodes. As all these nodes provide cone outputs, we de-
rive p = {f10, f11, f22}. The recipient’s cone receives inputs
from three nodes, and we derive q = {f5, f7, f8}. The fourth
step actually transplants the donor’s cone into a clone of
the recipient, forming a new recombined chromosome. This
process preserves all node types. Specifically, nodes in the
donor’s cone which are modules of type I or II remain mod-
ules of type I or II, respectively. The module descriptions of
the recombined chromosome are updated accordingly. In the
final step, dangling inputs of the transplanted module and
the recepient chromosome are randomly connected to the
nodes in lists p and q, respectively. If the resulting chromo-
some still contains unconnected inputs, they are connected
randomly to predecessing nodes.

4. EXPERIMENTS AND RESULTS
In this section, we present the experimental setup includ-

ing the parameters of the ES and GAs, the test problems,
and the metrics that is reported. Then, we show the results
and discuss the findings from our experiments.

4.1 Evaluated Metrics
As metrics to compare the proposed techniques we use the

computational effort as presented by Koza in [14]. For each
experiment with its specific number of M fitness evaluations
per generation, a number of independent runs is conducted.
In each run the optimization goal, i.e., the evolution of a
functionally correct circuit, will be reached by some genera-
tion i. The probability of reaching the optimization goal by
generation i can then be expressed as follows:

P (M, i) = (#succeeded runs by generation i)/(#runs)

donor chromosome

recipient chromosome

recombined chromosome
f10

f11

f22

p = {f10, f11, f22}

q = {f5, f7, f8}f5

f7

f8

f5

f7

f8

f30

f32

f10 f22

f11

f30

f32

Figure 4: Cone-based crossover: A cone of a donor
chromosome is transplanted into a clone of a recipi-
ent chromosome.



test problems
parity multiplier emg classifier

chromosome length 50 nodes 200 nodes 200 nodes
number of inputs ni 3/4/5 4/6 200
number of outputs no 1 4/6 1
functional set 2-LUT: and, nand, or, nor 4-LUT: and, andinv, or, xor 4-LUT: any function

M for 1 + 4 ES / GA-5/ GA-50 4/4/47 4/4/47 4/4/47
mutation rate 0.03 0.03 0.03
one-point mutation probability 0.6 0.6 0.6
compress/expand probability 0.1/0.2 0.1/0.2 0.1/0.2
module mutation probability 0.1 0.1 0.1
module size 2. . . 8 nodes 2. . . 10 nodes 2. . . 10 nodes

recombination probability for GA 0.01 0.01 0.01
crossover cone size 2. . . 20 nodes 2. . . 20 nodes 2. . . 20 nodes

Table 1: ECGP parameters for the different test problems

From that we can determine R(z), the number of inde-
pendent runs that have to be conducted to reach the opti-
mization goal with a certain probability z:

R(z) = dlog(1− z)/ log(1− P (M, i))e

The estimated overall number of fitness evaluations re-
quired to reach the goal with probability z is then set to:

I(M, I, z) = M · (i+ 1) ·R(z)

For each experiment with given M and z, the minimal
value for I(M, i, z) is determined as the computational effort
of the experiment. In our experiments, we have set z to 99%
and repeated all experiments for 50 times.

4.2 Test Problems
To be able to compare our techniques with the approaches

presented in previous work, we have used even-parity and
multiplier functions as test problems and set the ECGP
model parameters as given in [28, 29]. To allow for a meanig-
ful evaluation that isolates the effects of our proposed mod-
ule creation and propagation techniques, we have chosen to
implement our own version of the basic ECGP model as a
reference, rather than directly comparing our results to that
published in [28, 29].

Additionally, we have included classifiers for electromyo-
graphic signals as test problems. In this application, skin-
attached sensors collect electric signals of contracting mus-
cles to control a prosthetic hand [10, 25]. The test data has
been recorded from four muscles of a volunteer’s forearm.
A sequence of eight contractions (movements) with 20 rep-
etitions each has been measured. The typical signal for a
movement is composed of a 9 seconds relax phase and a 5
seconds contraction phase. From the last two seconds of the
contraction phase we have removed the dc offset and applied
rms smoothing to achieve the feature vectors. The resulting
data set consists of 144 strings of 200 bits each. Based on
that data we have tried to evolve a classifier circuit for the
movement ”open hand”. Classifiers differ from arithmetic
circuits in that there is no simple correctness measure. Typ-
ically, classifiers are evolved with training data and then run
on test data to determine metrics such as classification rate.
As we want to investigate and compare the computational
effort for evolving a classifier and not the generalization ca-
pabilities of the ECGP model, we have measured the clas-
sifiers’ fitness on the training data set and defined it to be
correct when the classification rate on training data exceeds
85% and 95%, respectively.

The ECGP model parameters, including the chromosome
length, the number of inputs and outputs, and the func-
tion set for the nodes are shown in Table 1. For the parity
function, we have used 2-input lookup table (LUT) nodes
but restricted the function set to a few Boolean functions.
For the multipliers, we have used 4-input LUTs but again
restricted the function set to the functions and, or, xor, as
well as andinv, which is an and with one input inverted. Fi-
nally, for the emg classifiers we have used 4-LUTs without
any restriction on the node function.

4.3 ES and GA Setup
We have implemented a 1+4 ES, where the fittest individ-

ual of a generation proceeds to the next generation. In case
a parent and an offspring have equal fitness, the offspring
is promoted over the parent. Further, four clones of this
individual are created and mutated. Mutation is applied
with a probability of one, but splits into three cases. We
either apply one-point mutation, compress/expand followed
by one-point mutation, or module mutation. The expansion
operator is more likely executed than the compress opera-
tor to increase the pressure towards useful modules. The
mutation rate denotes the percentage of mutated nodes in a
circuit or module, respectively. The actually used rates and
probabilities can be found in Table 1.

We have also implemented a standard elitism-based GA
with binary tournament selection. The elitism rate is 5%,
but at least one individual is picked. In the GA with popula-
tion size of five (GA-5), the best individual proceeds directly
to the next generation. For a population size of 50 (GA-50),
the three best individuals proceed directly to the next gener-
ation which leaves us with 47 remaining fitness evaluations.
The cone-based crossover operator considers cones with a
size of up to 20 nodes (primitive nodes and modules).

4.4 Discussion of Results
The experimental results are presented in Tables 2 and

3. The comparison of the different module creation tech-
niques is shown in Table 2, and the comparison between
the ES and GAs is shown in Tables 3. Both tables report
the computational effort in absolute numbers and relative
to our reference implementation which uses the techniques
presented previously [28]. A negative relative effort denotes
an improvement. For the comparison between ES and GA,
we do not provide results for the 5-parity function due to
long simulation times. From the experimental results, we
can make the following observations:



computational effort
analogue to previous work [28] aging cone

absolute absolute relative to [28] absolute relative to [28]
2x2 mul 66, 623 51, 961 −22.0% 49, 052 −26.4%
3x3 mul 8, 840, 574 6, 001, 917 −32.1% 3, 638, 120 −58.9%

3-parity 81, 122 49, 160 −39.4% 87, 915 +8.4%
4-parity 477, 880 494, 295 +3.4% 265, 796 −44.4%
5-parity 1, 825, 645 1, 385, 244 −24.1% 1, 112, 691 −39.1%

85% emg classifier 18, 260 14, 743 −19,3% 23, 855 +30.7%
95% emg classifier 510, 147 314, 311 −38,4% 873, 319 +71.2%

Table 2: Experimental results: 1 + 4 ES with different module creation techniques

computational effort
1 + 4 ES, analogue to previous work [28] GA, |population|=5 GA, |population|=50

absolute absolute relative to [28] absolute relative to [28]
2x2 mul 66, 623 64, 111 −3.8% 102, 593 +54.0%
3x3 mul 8, 840, 574 2, 518, 964 −71.5% 39, 064, 742 +341.9%

3-parity 81, 122 382, 036 +470.9% 186, 898 +130.4%
4-parity 477, 880 6, 294, 678 +1217.2% 6, 482, 504 +1256.5%

85% emg classifier 18, 260 19, 859 +8, 8% 28, 825 +57, 9%
95% emg classifier 510, 147 576, 988 +13.1% 695, 794 +36.4%

Table 3: Experimental results: 1 + 4 ES versus GA with different population sizes

1. Age-based module creation is highly effective. For six
out of the seven test problems, age-based module cre-
ation lowers the computational effort in comparison to
the previous method with improvements ranging be-
tween some 20% and 40%. The one exception is the
4-parity function, where the computational effort in-
creased slightly by 3.4%.

2. The overall results for the cone-based module creation
technique are somewhat inconclusive. However, look-
ing at the different test problems we note that for the
evolution of multipliers and for larger parity functions
cone-based module creation proves highly beneficial.
In contrast, for evolving emg classifiers the cone-based
approach does not work at all. Intuitively, the iden-
tification of cones as useful subcircuits is hampered if
the function is rather small or is a single-output func-
tion. In the first case there is no sufficient potential
for creating cones, whereas the second case lacks re-
usability of a cone for different outputs. Multipliers are
highly regularly structured functions that are neither
particularly small nor single-output functions. From
the experimental data it is clear that cone-based mod-
ule creation is effective for multipliers, especially more
effective than age-based module creation. In contrast,
emg classifier circuits are random logic functions which
might explain the unsatisfying performance of cone-
based module creation for this class of problems.

3. Comparing the 1 + 4 ES to a GA with population size
of 5, we conclude that the GA is better for multipliers
and dramatically worse for the parity function and for
the emg classifiers. Again, this points to the effective-
ness of the cone-based approach for multipliers and to
its inefficiency for single-output and random logic cir-
cuits. Increasing the population size for the GA to 50
increases the computational effort in any case substan-
tially. It has to be noted that a GA with a population
size of 50 also evolves correct circuits but needs far
more fitness evaluations. In each generation, this GA

performs 11.75× more fitness evaluations that the ES
and the GA with a population size of 5. As the results
show, even for multipliers this larger potential for re-
combination does not outweigh the higher effort per
generation.

5. SUMMARY AND FUTURE WORK
In this paper, we have presented advanced techniques for

creating and propagating modules in the CGP hardware rep-
resentation model. Age-based module creation prefers the
aggregation of rather old primitive nodes into modules, cone-
based module creation forms modules out of primitive nodes
that form cones. Further, we have detailed a crossover oper-
ator that selects a cone consisting of both primitive nodes as
well as modules in a donor chromosome and transplants this
cone into a clone of a recipient chromosome. We have evalu-
ated our novel techniques and compared them to the module
creation approach presented in previous work. The results
demonstrate the effectiveness of age-based module creation.
Cone-based module is even more effective but only for regu-
larly structured multiple output circuits such as multipliers.
For smaller and random logic circuits, the cone-based tech-
nique should be avoided. Comparing evolutionary strategies
with genetic algorithms, we have seen that the cone-based
crossover operator is again only beneficial for multipliers. In-
creasing the size of the population showed an adverse effect
on the computational effort.

There are a number of lines for future work. For example,
the sensitivity of age-based module creation on the mod-
ule size should be investigated. Perhaps one can find an
optimal range for the size of modules, or adapt the mod-
ule size to the current module population. Another option
for the GA is to let the individuals of a population share
the evolved modules, which could improve the convergence
behavior. Further, we would like to experiment with the in-
jection of classically engineered modules, such as full adders
for the evolution of multipliers. This would naturally lead
to mixed-granularity hardware representation models which
also fit modern FPGA architectures.
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