
Toward Self-adaptive Embedded Systems:
Multi-objective Hardware Evolution

Paul Kaufmann and Marco Platzner

University of Paderborn

Abstract. Evolutionary hardware design reveals the potential to pro-
vide autonomous systems with self-adaptation properties. We first out-
line an architectural concept for an intrinsically evolvable embedded sys-
tem that adapts to slow changes in the environment by simulated evo-
lution, and to rapid changes in available resources by switching to pree-
volved alternative circuits. In the main part of the paper, we treat evo-
lutionary circuit design as a multi-objective optimization problem and
compare two multi-objective optimizers with a reference genetic algo-
rithm. In our experiments, the best results were achieved with TSPEA2,
an optimizer that prefers a single objective while trying to maintain di-
versity.

1 Introduction

In the last decades, natural computing methods which take problem solving
principles from nature have gained popularity. Among others, natural computing
includes evolutionary computing. Evolutionary computing covers population-
based, stochastic search algorithms inspired by principles from evolution theory.
An evolutionary algorithm tries to solve a problem by keeping a set (population)
of candidate solutions (individuals) in parallel and improving the quality (fitness)
of the individuals over a number of iterations (generations). To form a new
generation, genetically-inspired operators such as crossover and mutation are
applied to the individuals. A fitness-based selection process steers the population
towards better candidates.

Evolvable hardware denotes the combination of evolutionary algorithms with
reconfigurable hardware technology to construct self-adaptive and self-optimi-
zing hardware systems. The term evolvable hardware was coined by de Garis
[1] and Higuchi [2] in 1993. In the last years, evolutionary techniques have gen-
erated astonishing circuits that are totally different from classically engineered
circuits, and sometimes even superior, as presented by Thompson and Layzell [3].
Moreover, for specifications varying over time, evolutionary techniques achieved
very promising results indicating their potential to construct self-adapting sys-
tems. Higuchi and Kajihara [4] presented case studies on evolved controllers for
prosthetic hands and robot navigation. However, several problems remain to
be solved, the major ones being the scalability and the robustness of evolved
hardware.



Our long-term goal is the development of autonomous embedded systems
that implement hardware functions (circuits) characterized by their functional
quality and resource demand. We plan to leverage on three concepts to achieve
a flexible adaptation: First, an intrinsic evolutionary search process adapts the
system to slow changes in the environment. Second, radical changes in avail-
able resources are compensated for by replacing the operational circuit with a
preevolved alternative which meets the new resource constraints. To this end,
we store at any time an approximated Pareto front of circuit implementations.
Third, a reconfigurable system on chip platform is the technology allowing for
the replacement of circuits during runtime and for the implementation of an
intrinsically evolvable system.

The main contribution of this paper is the development and comparison of
multi-objective evolutionary techniques for hardware design. In Section 2, we
first outline our architecture concept and then we review the few approaches
that treat evolutionary hardware design as a multi-objective optimization prob-
lem. Section 3 presents our basic hardware representation model and a baseline
genetic algorithm as well as two multi-objective evolutionary optimizers for hard-
ware design. Experiments and results are discussed in Section 4. Finally, Section
5 summarizes the paper and outlines further work.

2 Architecture Concept

2.1 Autonomous Subsystem and Fitness Evaluation

Fig. 1 shows the envisioned architecture concept for an intrinsically evolved
subsystem. The currently instantiated circuit reads input signals from sensors,
computes its function, and writes output signals to actuators. The instantiated
solution has to meet area and speed constraints. The intrinsic evolutionary al-
gorithm (EA) applies the genetic operators selection, crossover and mutation
to the candidate solutions stored in the population data structure. The fitness
evaluation is based on test vectors which are also stored in the subsystem. De-
pending on the application and system resources, the EA can run continuously
or from time to time. At any time, however, the subsystem maintains a set of
approximated Pareto points for the required circuit. Specifically, whenever a new
solution is found with better quality than the currently instantiated one (while
still meeting area and speed constraints), the subsystem’s controller can replace
the instantiated solution with the new one. In case of a rapid change in available
resources, the controller selects one of the circuits from the Pareto set that meets
the new constraints.

The fitness evaluation is highly application-dependent. For any reasonably
sized circuit, we will not be able to store all possible input vectors as test vectors.
A full test coverage is, however, only necessary for functions that reveal a binary
correctness property. The prime example are arithmetic functions, where we
typically accept nothing less than 100% correctness. Much of the recent work in
evolvable hardware has been concerned with the design of arithmetic circuits. We



Fig. 1. Architecture concept for intrinsic evolution.

use arithmetic functions as test functions for algorithm design and evaluation,
but do not view them as main candidates for autonomous evolution.

The ideal candidates for autonomous evolution are functions that are rated
by a quality metrics rather than a binary correctness. Damiani et al. [6] presented
the example of a hashing function where quality is measured by the ability to
distribute the input keys evenly. Other examples include image compression
where the quality is expressed by the compression rate and prosthetic hand
control of Higuchi and Kajihara [4], where the quality is given by the percentage
of correct classifications. In all these applications, the optimal circuit depends
on input data which varies with time. For these functions it suffices to store a
certain amount of test vectors that can either be static or being sampled during
runtime. For example, Keymeulen et al. [7] designed an adaptive robot control
with the objectives to avoid obstacles and reduce the distance to a given target.
The robot acquires spatial information about its environment, building a model
of it. New robot controllers are evolved and evaluated using this environment
model without necessity of making a real-world test run.



2.2 Multi-objective Hardware Evolution

A central issue in our work is hardware evolution with multiple objectives, e.g.,
functional quality, area and speed. While multi-objective evolutionary optimiz-
ers have been successfully used in system-level synthesis and synthesis of analog
circuits, there are only few projects dealing with multi-objective evolution of
digital circuits. Kalganova and Miller [8] used a multi-stage fitness function to
optimize for circuit correctness and hardware area. They evolved arithmetic cir-
cuits on a two-dimensional array of simple gates with an interconnect restricted
to feed-forward wires. The fitness F of an individual is defined as:

F =
{

c if c < 100%,
c + γ else (1)

The parameter c denotes the percentage of the correct output bits of the circuit
and γ is the number of gates in the array that are not used. As long as the
circuit is incorrect, the selection process bases solely on the functional quality.
Area is taken into account as soon as correctness is ensured. Coello et al. [9]
address the same problem with a multi-objective search algorithm. The initial
single correctness objective is redefined in a way that treats the function of
each circuit output as a separate objective. The evolutionary search algorithm
has to first meet all these objectives, and then area is taken into account. This
approach actually turns constraints into objectives but still uses a multi-stage
fitness function to optimize for area.

In contrast to related work, we use a multi-objective EA to optimize for
several objectives simultaneously. We are most interested in functions without
correctness property. Hence, we do not have to turn (correctness) constraints
into objectives. Resource constraints are satisfied by the system’s controller that
selects a proper circuit for instantiation. Research in multi-objective evolution-
ary algorithms has identified two key issues subsumed by Zitzler et al. [10]:
minimizing the distance between the approximated and the real Pareto front,
and maintaining a diverse population to avoid premature convergence to a single
objective. The remaining part of this paper presents our work in multi-objective
optimizers for evolving digital hardware. This is the central algorithmic challenge
in building the autonomous system outlined in Fig. 1.

3 Evolutionary Hardware Design

We use the Cartesian Genetic Programming (CGP) introduced by Miller and
Thomson [11] in our work. CGP is a structural hardware model where a circuit
is formed by combinational logic blocks arranged in a two-dimensional array
and an interconnect (wires) between the blocks. The array consists of nc × nr

combinational blocks, ni primary inputs, and no primary outputs. The primary
inputs can be connected to the inputs of any logic block in the array. A logic block
in column c has nn inputs that can be connected to the columns c − l, . . . , c −
1 of the array and to the primary inputs, respectively. This ensures that no



Fig. 2. 2× 2 bit-adder evolved on the CGP model.

combinational feedback loops are generated. A combinational block implements
one out of nf different logic functions of its inputs. An individual is defined by
its chromosome (genotype) with a length of nc · nr(nn + 1) + no.

Fig. 2 presents an example of a successfully evolved 2×2 bit-adder on a GCP
model instance with ni = 4, no = 4, nc = 5, nr = 4, nn = 2, nf = 9, and l = 4.
The nine possible logic block functions have been chosen as AND, ONE, XOR,
NULL, NAND, NOT, NOR, OR, and XNOR.

In the following, we outline the three algorithms used for evolving circuits:

Reference Algorithm GA is a standard single-objective genetic algorithm. The
parameters are set as follows: The top 5% of the individuals are selected and
transferred without any modification to the next generation. The recombination
probability is chosen to be 90%. The individuals are recombined uniformly. We
choose the mutation rate such that only one combinational block or wire is
mutated each time the mutation operator is applied. In our implementation each
recombined child is mutated once. These parameter settings have been used for
the experiments described in the following section.

SPEA2 is a recent multi-objective evolutionary optimizer introduced by Zitzler
et al. [10] with a structure shown in Fig. 3. SPEA2 maintains two sets of in-
dividuals: an archive that contains non-dominated individuals and a breeding
population. In each generation, the two sets are merged and the fitness of the
individuals is evaluated. The non-dominated individuals are then copied to the
new archive. If the archive exceeds a predefined maximum size, SPEA2 applies a
nearest neighbor density estimation technique to thin out clusters on the Pareto
front. The fitness assigned to an individual considers the number of individuals
it dominates - the dominance count, the number of individuals that are domi-
nators - the dominance rank, and a density estimate based on the k-th nearest
neighbor method. All individuals undergo a binary tournament selection which
selects parents for the recombination and mutation.



Fig. 3. Structure of the SPEA2
and TSPEA2 optimizers.

TSPEA2 is an algorithm we have devised to
put an increased selection pressure on one
objective while trying to keep diversity. This
should be beneficial for evolving circuits with
a correctness property. Compared to SPEA2,
we expect degraded fitness values for the other
objectives. Both SPEA2 and TSPEA2 use an
archive and a breeding population and a se-
lection scheme based on Pareto dominance
ranking. TSPEA2, however, checks as a first
selection rule in a binary tournament whether
one of the two individuals dominates the other
regarding the main objective. TSPEA2 has
been motivated by an earlier algorithm MO-
Turtle GA presented by Trefzer et al. [12],
that preferred a main and several random
objectives during the evolution of analog cir-
cuits.

4 Experiments and Results

We have evolved several test functions with GA, SPEA2, and TSPEA2. In this
section, we report on typical results for a 6-parity function and a hashing func-
tion. While the 6-parity function is an example for a function with a correctness
property, the hashing function is rated by a non-binary quality metrics. The
functional set available for the logic blocks in the CGP model comprises the 9
functions shown in Fig. 2. The parameters for crossover and mutation used in
SPEA2 and TSPEA2 are set as described in Section 3. The tournament selec-
tion operator is configured to execute two tournaments before selecting one of
the competitors as a parent. For all evolutionary algorithms, we conducted 10
optimization runs with a maximum of 100.000 generations.

The delay of a circuit is in the range {0, . . . , nc +1}. The fitness with respect
to speed is determined as:

speed(c) = 1− delay(c)
nc + 1

(2)

The speed equals 1 for the fastest possible circuit and 0 for a circuit that has no
connection at all from primary inputs to primary outputs. The number of logic
blocks used by a circuit, denoted as used blocks(c), is in the range {0, . . . , nc·nr}.
Based on this number, the fitness with respect to area is defined as:

area(c) = 1− used blocks(c)
nc · nr

(3)

A circuit with minimal area gets an area value of 1, a circuit that utilizes all
available logic blocks has an area value of 0.



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20000  40000  60000  80000  100000

fu
nc

tio
na

l q
ua

lit
y 

(1
=

pe
rf

ec
t)

generations

average GA functional quality
average TSPEA2 functional quality

average SPEA2 functional quality

Fig. 4. Evolving the 6-parity function. Data from 10 experiments is shown.

4.1 6-parity

The used parameters for the CGP model are nc = nr = ni = 6, no = 1, nn = 2,
l = nc

2 . For the parity function, a circuit’s c fitness with respect to functional
quality is defined as follows:

f(c) =
1

1 +
∑

i∈B6(parity(i)− c(i))2
. (4)

Thus, a correct parity function has a functional quality of 1. It is an easy task
for a conventional GA to evolve a correct circuit for the 6-parity function. Using
a population of size 100, only 69 generations were needed on average to evolve a
fully functional circuit. In contrast to the GA, SPEA2 with an archive and popu-
lation size of 100 evolved only four correct solutions overall and needed more than
30000 generations on average. With TSPEA2 preferring the functional quality,
the search process converged faster with, on average, 903 generations to evolve
a correct circuit. Fig. 4 shows the development of the average functional qual-
ities for the three algorithms, and the speed and area parameters for correctly
evolved circuits. Both SPEA2 and TSPEA2 found the same dominant solution.
Moreover, TSPEA2 managed to discover a more diverse solution set compared
to SPEA2. The conventional single-objective GA evolved correct circuits with
inferior area and speed.

4.2 Hashing function

The hashing function has been evolved previously by Tettamanzi et al. [6]. To be
able to compare their experiments with ours, we used the same CGP-parameters:
nc = 8, nr = 8, l = 8 and nn = 4. The difference to our work is that Tettamanzi
et al. restricted wires to connect only to logic blocks in the same row. We have
relaxed this constraint which leads to an improvement using a conventional GA.

The problem statement is as follows: Find a function h : B16 → B8 which
maps a set M of 212 keys to a set N of 28 indices in the most uniform way



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  100  200  300  400  500  600  700  800  900  1000

fu
nc

tio
na

l q
ua

lit
y

generations

average GA functional quality
average TSPEA2 functional quality

average SPEA2 functional quality

Fig. 5. Evolving the hashing function. Average fitness development over 10 experiments
for GA, SPEA2, and TSPEA2.

possible. The fitness function is defined as:

f(c) =
1

1 + 1
|N |

∑|N |
i=1(|{j|j ∈ M, c(j) = i}| − |M |

|N | )
2

(5)

Tettamanzi et al. [6] evolved the best individual with a fitness value of
0.097785 after 257 generations. On our less constrained CGP model, the single-
objective GA reached easily an average fitness beyond 0.1, as is shown in Fig. 5.
After 257 generations, the best individual showed a fitness of 0.116469. Fig. 5
shows the fitness development for GA, SPEA2, and TSPEA2. As expected, TS-
PEA2 performed close to GA while SPEA2 lagged behind. Fig. 6 displays the
functional quality vs. area and speed. The figure shows two-dimensional projec-
tions of the Pareto front after 1000 generations. As expected, our experiments
confirmed that a conventional GA optimizes the functional quality faster than
SPEA2 and TSPEA2. Although TSPEA2 is close to GA measured in number
of simulated generations, we have to note that simulating one generation in
TSPEA2 takes about an order of magnitude longer than for GA. SPEA2 and
TSPEA2 excel, however, in evolving solutions with improved area and speed.
Table 1 lists the resulting functional qualities (best, worst and average case)
after iterating for 1000 generations.

Comparing SPEA2 with TSPEA2, we note that SPEA2 did not evolve indi-
viduals with better area or speed. In fact, all individuals found by SPEA2 are
dominated by individuals generated by TSPEA2. This is an interesting obser-
vation, as one would expect that TSPEA2, which prefers the functional quality
over the other objectives, leads to a somewhat deteriorated Pareto front. This
result has been consistent over all simulation runs with the hashing function.



Fig. 6. Evolving the hashing function. 2D projections of the Pareto front for two typical
populations. Also the objectives of the best individuals found by GA during the 10
experiments are plotted.

Table 1. Evolving the hashing function. Reached functional qualities after 1000 gen-
erations.

GA SPEA2 TSPEA2

best 0.135 0.084 0.125

worst 0.094 0.075 0.092

average 0.114 0.079 0.110

A possible explanation is that in our experiments the objectives are not nec-
essarily conflicting. Driving the evolution towards functional quality will then
also improve area and/or speed. However, this may not be generalized as design
experience shows that for many circuits the functional quality, speed and area
are indeed conflicting.

5 Summary and Further Work

In this paper, we have outlined a novel architectural approach for self-adaptive
autonomous embedded systems. Simulated evolution is used to adapt to slow
changes in the environment; switching to preevolved alternatives is the proper
reaction to drastic changes in the available resources. We have then focused
on multi-objective evolutionary optimizers and compared the known algorithm
SPEA2 with the newly devised technique TSPEA2 and a baseline GA. We have
presented comparisons of these algorithms for two test functions.

An implementation of the overall system shown in Fig. 1 is ongoing. Further
work will focus on the scalability problem and investigate variants of the CGP
model with more coarse-granular building blocks. Moreover, we will validate our
observations on larger test functions.



6 Acknowledgement

This work was supported by the German Research Foundation under project
number PL 471/1-1 within the priority program Organic Computing.

References

1. de Garis, H.: Evolvable Hardware – Genetic Programming of a Darwin Machine. In:
Proceedings International Conference on Artificial Neural Networks and Genetic
Algorithms (ICANNGA), Springer (1993)

2. Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving
Hardware with Genetic Learning: A First Step Towards Building a Darwin Ma-
chine. In: Proceedings 2nd International Conference on Simulation of Adaptive
Behavior (SAB), MIT Press (1993) 417–424

3. Thompson, A., Layzell, P.: Analysis of Unconventional Evolved Electronics. Com-
munications of the ACM 42 (1999) 71–79 ACM Press.

4. Higuchi, T., Kajihara, N.: Evolvable Hardware Chips for Industrial Applications.
Communications of the ACM 42 (1999) 60–66 ACM Press.

5. Walker, J., Garrett, S., Wilson, M.: Evolving Controllers for Real Robots: A Survey
of the Literature. Adaptive Behavior 11 (2003) 179–203 MIT Press.

6. Damiani, E., Liberali, V., Tettamanzi, A.: Evolutionary Design of Hashing Func-
tion Circuits Using an FPGA. In: International Conference on Evolvable Systems
(ICES), Springer (1998) 36–46

7. Keymeulen, D., Konaka, K., Iwata, M., Kuniyoshi, Y., Higuchi, T.: Robot Learn-
ing Using Gate-Level Evolvable Hardware. In: EWLR-6: Proceedings of the 6th
European Workshop on Learning Robots, London, UK, Springer-Verlag (1998) 173

8. Kalganova, T., Miller, J.: Evolving More Efficient Digital Circuits by Allowing
Circuit Layout Evolution and Multi-Objective Fitness. In: The First NASA/DoD
Workshop on Evolvable Hardware, Pasadena, California, IEEE Computer Society
(1999) 54–63

9. Coello Coello, C.A.: Treating Constraints as Objectives for Single-Objective Evo-
lutionary Optimization. In: Engineering Optimization. Volume 32., Taylor and
Francis (2000) 275–308

10. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich,
Switzerland (2001)

11. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Proceedings of
the European Conference on Genetic Programming, London, UK, Springer-Verlag
(2000) 121–132

12. Trefzer, M., Langeheine, J., Meier, K., Schemmel, J.: Operational Amplifiers:
An Example for Multi-objective Optimization on an Analog Evolvable Hardware
Platform. In: International Conference on Evolvable Systems (ICES), Springer
(2005) 86–97


