
MOVES: A Modular Framework for Hardware Evolution

Paul Kaufmann and Marco Platzner
University of Paderborn
{paulk, platzner}@upb.de

Abstract

In this paper, we present a framework that supports ex-
perimenting with evolutionary hardware design. We de-
scribe the framework’s modules for composing evolutionary
optimizers and for setting up, controlling, and analyzing ex-
periments. Two case studies demonstrate the usefulness of
the framework: evolution of hash functions and evolution
based on pre-engineered circuits.

1 Introduction

In the last years, many authors have presented experi-
ments in which digital hardware has been designed by evo-
lutionary optimization. Perhaps the most popular model for
representing a hardware circuit is the Cartesian Genetic Pro-
gramming (CGP) model [13]. Many variants of this model
exist, e.g., [16]. Generally, we can observe a huge variety of
proposed hardware representation models, evolutionary op-
erators, and evolutionary optimization strategies – yet alone
their manyfold parameter settings. Then, evolvable hard-
ware experiments are very time-consuming. Typically, for a
single experiment many simulation runs with different ran-
dom number seeds and parameter settings are required.

To facilitate evolvable hardware research we have been
developing a framework within our MOVES project that
enables the rapid setup of experiments, the interactive and
offline visualization and analysis of results, and a cluster-
accelerated execution. The MOVES framework is easily
extensible as it features a highly modular composition with
a clear separation of algorithms, representation models, op-
erators, and tools for simulation control and visualization.
This allows for a better comparability between different al-
gorithms or simulation setups.

The main contribution of this paper is the presentation
of the MOVES framework for experimenting with hard-
ware evolution. We think that such a framework is indis-
pensable for conducting larger, comparative and repetitive
experimental studies and, thus, of value to the community.
Further, we discuss an experiment to evolve arithmetic cir-

cuits based on an initial population including functionally
correct, pre-engineered circuits and an experiment to evolve
a hashing function for a cache controller.

The paper is organized as follows: In Section 2, we de-
scribe our framework’s structure and its main modules re-
garding the implementation of evolutionary optimizers for
hardware design. The modules supporting experimentation
are presented in Section 3. Section 4 discusses two case
study experiments in evolvable hardware that demonstrate
the usefulness of our framework. Finally, Section 5 con-
cludes the paper.

2 Composing Evolutionary Optimizers

The goal of the MOVES framework is the separation
of the different functionalities required for experimenting
with hardware evolution. Consequently, the modules of
the framework are divided into two major groups, modules
that constitute the evolutionary optimization techniques and
modules that serve the experimentation process, including
experiment setup and control, statistic analysis, and visual-
ization. The modules of the latter group are described in
Section 3.

The modules for the evolutionary optimization techni-
ques are shown in Figure 1 and include the hardware repre-
sentation model, the evolutionary operators, and the evo-
lutionary algorithms. This separation is suitable for all
population-based optimization techniques that apply evo-
lutionary operators, e.g., genetic programming, genetic al-
gorithms, and evolutionary techniques. In the following,
we describe the modules together with the currently imple-
mented functionality.

2.1 Hardware Representation Models

The hardware representation is in a sense the most fun-
damental module as it potentially carries the most depen-
dencies to other modules of the framework. Technically,
the representation model is an implementation of the chro-
mosome class. Two different models are currently imple-
mented in the framework:

1

binary tournament selection

CGP crossover

CGP mutation

ECGP mutation

SPEA2

TSPEA2

NSGA2

MicroGA

mutation

crossover

selection

fitness

CGP

ECGP

GA

MOEA

evolutionary

operator

representation

model

EA

modules

uniform

one point

...

...

......

functional quality

area

delay

compactness

…

uniform

uniform

......

...

application specific

representation model

specific

Figure 1. Main modules for composing evolutionary optimizers

• Cartesian Genetic Programming (CGP) is the most
popular hardware representation model in the context
of evolutionary circuit design and was proposed by
Miller and Thomson [13]. CGP works on a directed
acyclic graph that is spatially constrained by the geo-
metrical structure of a two-dimensional array. Depend-
ing on its position in the chromosome, each gene maps
to a specific position on that array. The popularity of
the CGP model stems from its closeness to real FPGA
hardware. CGP models can be mapped rather eas-
ily to FPGAs, as technology mapping and placement
are already given. Routing is typically left to backend
tools, although some approaches encode partial rout-
ing as well. We have implemented a highly parame-
terizable version of the CGP model in our framework.
For example, the blocks’ logic functions can either be
specified by an arbitrary set of gates or by lookup table
structures. An example of a CGP individual imple-
menting a hashing function is shown in Figure 2. The
main observation we and others, e.g., [11], [2], made

by experimenting with the CGP model is that is suf-
fers from two disadvantages. First, the fine-grained
computational nodes and interconnects define a large
search space leading to the problem of scalability. It
takes already a substantial runtime to evolve simple
arithmetic functions with small input sizes. Second,
the structural properties of the CGP model makes it
difficult for the evolutionary operators to automatically
extract and work on meaningful substructures.

• Embedded Cartesian Genetic Programming (ECGP) is
a model first presented by Walker et al. [16]. ECGP
extends CGP by the idea of creating larger building
blocks out of the basic logic functions. In analogy
to biology, ECGP tries to build organs out of the ba-
sic cells provided by CGP. Related concepts are incre-
mental evolution [15] and automatically defined func-
tions [9]. These approaches are currently considered a
promising approach to fight the problem of scalability.
The main issue in creating organs is how to identify

2

Figure 2. Example of an evolved hashing
function on a CGP model (8×4 array, 16 pri-
mary inputs, and 8 primary outputs)

suitable blocks. Walker and Miller [16] select blocks
randomly. Alternatively, we are experimenting with
techniques that take into account the number of gener-
ations for which single nodes or sets of nodes persist
in the population.

2.2 Evolutionary Operators

Crossover and mutation operators depend strongly on
the hardware representation model. In the CGP model, a
chromosome is encoded by a column-wise enumeration of
genes. A gene is represented by its node function and its
connections to predecessor nodes. We have currently im-
plemented two crossover methods, uniform and one point
crossover. Uniform crossover selects for every gene of a
newly generated individual (child) randomly one of the par-
ents’ genes on the corresponding position. In contrast to
that, one point crossover creates a child by selecting the first
half of the chromosome from one parent and the second part
of the chromosome from the other parent. The mutation op-
erator on the CGP model selects one gene with a certain
probability and manipulates either its logic function or one
of its connections. Following the suggestion in [16], we use
only mutation but no crossover for the ECGP model.

Selection operators that rely exclusively on the fitness or
objective values are independent of the chromosome repre-
sentation. We have implemented a standard binary tourna-
ment selection scheme that is used, for example, by classic
genetic algorithms. Some evolutionary algorithms, espe-
cially multi-objective evolutionary algorithms, rely on more

complex selection schemes. They might employ breeding
and archive populations and use a standard selection scheme
only for the breeding population.

The fitness evaluation can include a number of fitness
metrics. The functional quality of a hardware circuit is pos-
sibly the most often used fitness metrics. Apparently, it
is possible to specify a (small) combinational digital func-
tion by providing its truth table. Hence, in principle we
could define an application-independent functional quality
by, e.g., comparing the number of correct output vectors to
the overall number of possible test patterns. We did not im-
plement such an evaluation as it is too restricted. First, for
functions with a higher number of inputs, it will be not pos-
sible to test for all input vectors. Second, many – and in our
view the more interesting – functions do not reveal a binary
correctness. An example is the hashing function. The func-
tional quality of the hashing function is best measured by
its ability to evenly distribute the input keys, which depends
on the input data. In our framework, we provide a basic
function to compute a circuit’s output for a given input vec-
tor but foresee a separate and specific evaluation method for
each application.

As further fitness metrics, we have implemented area and
delay. Area and delay are important characteristics of digi-
tal circuits which depend only on the chromosome and the
used representation model and not on the specific applica-
tion. We provide straight-forward estimates for those pa-
rameters. The area of an individual can be determined by
counting the number of used blocks in the original array.
Assume the number of logic blocks used by a circuit c, de-
noted as used blocks(c), is in the range {0, . . . ,m}. Based
on this number, the fitness with respect to area is defined as:

area(c) = 1− used blocks(c)
m

(1)

A circuit with minimal area gets an area value of 1, a circuit
that utilizes all available logic blocks has an area value of 0.
The delay is estimated by the depth of the evolved network.
Assume the delay of a circuit is in the range {0, . . . , n}.
Then, the fitness with respect to speed is determined as:

speed(c) = 1− delay(c)
n

(2)

The speed equals 1 for the fastest possible circuit and 0 for
a circuit with maximal delay.

For more accurate area and delay values, we have cou-
pled the standard Xilinx place and route tools as backend
to our fitness evaluation. To this end, we rely on the JHDL
package [1] which generates an EDIF netlist for the (rel-
atively placed) evolved circuits. The Xilinx design imple-
mentation tools are run on this netlist. While we gain ac-
curate fitness values for area and delay that way, evolving
hardware circuits becomes very time-consuming.

3

2.3 Evolutionary Algorithms

Evolutionary algorithms is the last module in our frame-
work. Here, we instantiate a specific representation model
and call methods from the other modules. We have cur-
rently implemented and tested the following algorithms:
GA, SPEA2, TSPEA2, NSGAII, µGA and µGA2. GA is
a classic elitism-based single-objective evolutionary algo-
rithm. SPEA2 was presented by Zitzler et al. [18] and is
a well-known multi-objective evolutionary algorithm. TS-
PEA2 is our own variant of SPEA2 that is able to prefer one
of the objectives over the remaining ones while still trying
to preserve the diversity in the Pareto front [8] [7]. Deb et
al. introduced NSGAII [5], a non-dominating sorting multi-
objective optimizer. Finally, Coello Coello and Pulido pre-
sented the µGA [3] and µGA2 [14] algorithms. Further, the
multi-objective optimizer OMOEA2 [17] is already imple-
mented but needs to be tested.

2.4 Implementing new Schemes

The MOVES framework is realized in Java. Its modu-
lar structure allows to compose a representation model, evo-
lutionary operators, and an evolutionary algorithm to form
an evolutionary optimizer. Through its object orientation,
the framework can be easily extended. To implement new
schemes, the appropriate modules have to be implemented
which, mostly, means deriving new classes from existing
ones and overwriting methods.

For example, defining a new fitness function is presum-
ably the most frequent extension and requires the imple-
mentation of a fitness evaluation method. This can always
be done by overwriting the calculateFitness()
method of the fitness class. However, fitness metrics which
can be expressed by a single equation do not need to over-
load the calculateFitness() method. Rather, they
are specified in a text file and compiled directly into Java
byte code at the start of the simulation run using the JEL
library [12].

3 Experimentation Support and Tools

In this section, we describe the modules of the MOVES
framework that deal with the setup, control, visualiza-
tion, analysis, and distribution of experiments. The over-
all framework is developed in Java and thus platform-
independent. The framework uses several external li-
braries such as jgrapht for efficient graph representa-
tion and manipulation, jgraph for graph visualization,
and for the online visualization of the optimization progress
jfreechart.

3.1 Creating and Controlling Experi-
ments

An experiment is defined by creating two configuration
files; one specifies the evolutionary optimizer and another
one the experiment setup. The evolutionary optimizer con-
figuration includes the chosen representation model, evolu-
tionary operators, and evolutionary algorithm. The experi-
ment setup configuration comprises termination conditions,
visualization settings, and the logging frequency. The con-
figuration can be provided as regular text files or, alterna-
tively, be entered via the framework’s graphical user inter-
face.

Experiments can be run interactively or in batch mode.
In the interactive mode, the user can pause, resume, or stop
the simulation at any time. Generally, the parameters con-
trolling the experiment setup can be modified during the
experiment. For example, the experiment can be executed
step-wise or continuously until some of the termination con-
ditions are reached. The user is free to switch between
these modes at any time. It is also possible to save the cur-
rent search state and reload it later on to analyze it. These
features are extremely useful to debug and verify new rep-
resentation models and their corresponding operators, and
to tune the parameters of the evolutionary algorithm. The
batch mode is used for an unattended simulation. Statistical
data can be gathered during the experiment and exported to
a text file for later processing.

Experiments are generally logged in a textual format.
The log contains algorithmic parameters and the important
information about the search process. To this end, every in-
stance of an operator and an evolutionary algorithm can be
associated with an output stream to realize a specific data
logging. By default, after each generation a complete report
including the parameters used and a textual presentation of
the best individual is logged.

We have further implemented a checkpointing mecha-
nism. Checkpoints can be scheduled every n generations
or after every n seconds. When a checkpoint is reached,
the framework saves a snapshot of the complete search
state. Checkpointing serves two goals: First, we are able
to restart the experiment after a breakdown. Second, by an
offline analysis of the checkpoints the optimization run can
be completely analyzed.

3.2 Visualization and Analysis

There are two visualization tools, the visualization of the
representation model (chromosome) and the visualization
of the evolutionary optimization process. For visualizing
the representation, the representation model has to imple-
ment the Java swing component JPanel. As an im-
portant feature, the user can use the chromosome represen-

4

Figure 3. Example screen shots from our framework: graphical representation of a specific individ-
ual on the CGP model (background window), development of the fitness over time (foreground-left
window), and current Pareto fronts (foreground-right window)

tation to modify the viewed data, e.g., to manipulate input
data or even change the circuit’s structure and function. We
have already implemented this functionality for the CGP
and ECGP models. If this class is missing for a specific
representation model, a textual representation of the chro-
mosome is drawn.

The standard visualization of the evolutionary optimiza-
tion process displays the progress of the best fitness and the
population’s average fitness over the generations. This is
most useful for single-objective optimizers. In experiments
with multi-objective optimizers we can display the progress
of all individual fitness values, and the two-dimensional
projections of the Pareto fronts.

The visualizations can be done either during an exper-
iment run or offline using the Statistic-Viewer and
Chromosome-Viewer tools on previously saved experi-
ment log streams.

3.3 Distributed Simulation

For an evolvable hardware experiment, usually dozens
of simulation runs are required. As evolutionary algorithms
are stochastic optimization methods, several runs with dif-
ferent seeds for the random number generators are con-
ducted. Often, parameters need to be varied in given ranges,
each setting requiring a number of simulation experiments.

Such experiments can be tedious to set up and take a very
long runtime. The single experiments, however, are inde-
pendent of each other and amenable to parallel execution.

The MOVES framework is able to automatically create
a set of experiments (experiment configuration files) where
parameters are varied in specified intervals and with defined
step sizes, and to execute all simulations as batch jobs on a
compute cluster. We employ the grid software Condor [6]
that distributes the jobs on the computing nodes in the clus-
ter, monitors the node’s activities, and relocates the jobs if it
becomes necessary. Condor itself does not support the mi-
gration of multithreaded Java processes. Hence, we lever-
age on our checkpointing mechanism to restart a process in
case Condor decides to migrate the process to a different
machine. Before submitting an experiment to Condor, our
framework composes all experiment class files and the used
libraries into a single jar and creates the according sub-
mission file. Upon termination of the experiment, the stan-
dard input, output and error streams, as well as the check-
pointing and log files are transferred to the Condor server.
There, the data can be viewed and analyzed. To keep track
of the progress, the MOVES framework includes a network
monitor module which displays the status of executed ex-
periments.

5

Figure 4. Evolving a hashing function. The
fitness is given by the hit rate of the cache.

4 Evolvable Hardware Case Studies

4.1 Hashing Functions

In this first case study, we report on experiments with
evolving hashing functions. The hashing function is a
prominent example for the group of combinational digital
functions that have no binary correctness. The functional
quality of the hashing function is measured by its ability
to evenly distribute the input keys. In contrast to the of-
ten investigated arithmetic functions, a hashing function’s
performance is strongly dependent on the input data, i.e.,
the distribution of keys. The offline optimization of a hash-
ing function to a given key distribution might be of interest
on its own right. However, the hashing function is further
amenable to online evolution, one of the techniques consid-
ered for the construction of self-adapting systems.

Experiments on evolving a hashing function on the gate
level have been presented by Tettamanzi et al. [4]. To be
able to compare their experiments with ours, we used the
same CGP parameters: the number of columns in the array
(nc) equals 8, the number of rows (nr) equals 8, the number
of primary inputs (ni) is 16, the number of primary outputs
(no) is 8, the number of columns a connection can reach
back to the primary inputs (l) is also set to 8, and the number
of block inputs (nn) is 4. For the set of possible node func-
tions, we experimented with two versions: allowing all pos-
sible node functions of 4 inputs (as Tettamanzi et al. did),
and restricting the node functions to the set AND, ONE,
OR, XOR, NULL, NAND, NOT, NOR and XNOR. We
could not observe any substantial differences between these
variants, neither in functional quality nor in speed of con-
vergence. Tettamanzi et al. restricted wires to connect only
to logic blocks in the same row - a constraint we have re-

laxed in our experiment.
The problem statement is as follows: Find a function h :

B16 → B8 which maps a set M of 212 keys (out of 216

possible keys) to a set N of 28 indices in the most uniform
way possible. The fitness function is defined as:

f(h) =
1

1 + 1
|N |

∑|N |
i=1(|{j|j ∈M, h(j) = i}| − |M |

|N |)
2

Tettamanzi et al. [4] evolved the best individual with a fit-
ness value of 0.097785 after 257 generations. Due to our
relaxed routing constraints, we could achieve improved re-
sults. The single-objective GA reached easily an average
fitness beyond 0.1. After 257 generations, the best individ-
ual showed a fitness of 0.116469. The experiments with
hashing functions have been conducted on a cluster of 18
nodes, each one being a P4-3GHz with 2GB RAM.

Further, we have conducted initial experiments in evolv-
ing cache controllers. As an example, using the MIPS sim-
ulator SPIM [10] we have generated a trace of programm
counter addresses for a quick sort algorithm. To sort a given
test array of integers, the program executes 174603 instruc-
tions which are fetched from 96 different addresses. Now
we have considered a very simple instruction cache organi-
zation with 16 cache lines and one word per line, and tried to
evolve a hashing function for a cache controller optimized
to quick sort. The functional quality was defined as follows:

f =
#hits

#executed instructions

The hashing function has been evolved on a CGP model
with nc = nr = l = 8 and nn = 4. The number of in-
puts was restricted to ni = 8, and the number of outputs
had to be no = 4. We allowed all possible node func-
tions for the 4-input nodes. Figure 4 shows the result of
the experiment. The evolved hashing function achieves a
hit rate of 0.55 after 10’000 generations, whereas a direct
mapped cache would show a hit rate of 0.33. In terms of
cache hits, our hash function leads to 96212 hits compared
to the 58804 hits for the direct mapped cache. We have
to note that this comparison is not fair, as in a real MIPS-
based system, much larger caches with multi-word blocks
and higher degrees of associativity would be used. Fur-
ther, we have not yet worked out a complete concept for
the implementation of an evolvable hardware cache. How-
ever, cache controllers might be an interesting application
area for evolutionary hardware.

4.2 Evolution based on Pre-engineered
Circuits

With the second case study, we present two ideas for
evolving hardware. The first is to use a multi-objective evo-
lutionary optimizer to evolve an approximated Pareto front

6

Figure 5. Evolving 3× 3 adders with SPEA2 and TSPEA2. Two-dimensional projections of the three-
dimensional Pareto-front are plotted. The objectives on the x-axes are calculated as specified in
Section 2.2. The pre-engineered carry look ahead adder (CLA) and ripple carry adder (RCA) are
marked by bold circles.

of functionally good circuits with small area and short delay
(high speed). In previous work, we have experimented with
SPEA2 [18], a widely-used multi-objective evolutionary al-
gorithm, and proposed TSPEA2 [7]. TSPEA2 is a variant of
SPEA2 that is able to prefer one of the objectives over the
remaining ones while still trying to preserve the diversity in
the Pareto front.

The second idea looked at in this case study is to start
the evolution of arithmetic circuits with an initial population
including classically engineered circuits. There exists a vast
knowledge on how to design arithmetic circuits of all kinds.
Despite that fact, many authors strived for evolving such
circuits with less gates. However, it turns out that evolving
functionally correct arithmetic circuits is a challenge in the
first place.

We have chosen a 3×3 adder to examine the idea of using
pre-engineered circuits. We have constructed an initial pop-
ulation with 5% ripple carry adders (RCA), 5% carry-look-
ahead adders (CLA), and 90% randomly generated circuits.
Then, we have tried to evolve Pareto fronts with both the
SPEA2 and the TSPEA2 algorithm on a CGP model with
nc = 5, nr = 8, ni = 6, no = 4, nn = 4, and l = 5. The
node functions could be arbitrary functions of 4 inputs. The
population size has been set to 100. The experiments have
been run for 100.000 generations.

Figure 5 shows typical Pareto fronts for SPEA2 and TS-
PEA2, each one with pre-engineered circuits in the initial
population and with a standard random initial population.
The left-hand side of Figure 5 presents the functional qual-
ity over the area; the right-hand side displays the functional
quality over the speed. A functional quality of 1 denotes a
correct adder. An area of 1 and a speed of 1 are the minimal

values.
The following observations can be made: TSPEA2

evolves circuits with much better functional quality than
SPEA2 by preferring functional quality over area and speed.
Moreover, in this experiment all circuits evolved by SPEA2
are dominated by some circuits evolved by TSPEA2. The
second observation is that evolving with pre-engineered cir-
cuits results only in small improvements. TSPEA2 could
evolve circuits with better area, but identical speed parame-
ters. There are several reasons for this. The speed estimates
are rather coarse (see Section 2) which makes a differentia-
tion difficult, especially for small CGP arrays. Here, using
the Xilinx backend tools to route the circuits and get more
accurate delays would be useful. Then, the crossover oper-
ator for the CGP model does not respect the spatial arrange-
ment of genes. Useful substructures are not recognized as
such and are likely to be destroyed. Based on these exper-
iments we conclude the insufficiency of a blind crossover
operator on the CGP representation model. We plan to redo
this experiment on the ECGP model.

5 Conclusion

In this paper we presented MOVES, a modularized
framework for experimenting with evolutionary algorithms
for hardware design. We described the main modules of the
framework, including modules required to implement evo-
lutionary optimizers and modules required to set up, con-
trol, analyze and distribute experiments. The usefulness of
such a framework has been demonstrated by two case stud-
ies, evolving hashing functions and evolving adders based
on pre-engineered circuits.

7

6 Acknowledgement

This work was supported by the German Research Foun-
dation under project number PL 471/1-1 within the priority
program Organic Computing.

References

[1] P. Bellows and B. Hutchings. JHDL - An HDL for Re-
configurable Systems. In K. L. Pocek and J. Arnold, ed-
itors, IEEE Symposium on FPGAs for Custom Computing
Machines, pages 175–184, Los Alamitos, CA, 1998. IEEE
Computer Society Press.

[2] X. Cai, S. L. Smith, and A. M. Tyrrell. Positional Inde-
pendence and Recombination in Cartesian Genetic Program-
ming. In Genetic Programming, 9th European Conference,
EuroGP 2006, Budapest, Hungary, April 10-12, 2006, Pro-
ceedings, volume 3905 of Lecture Notes in Computer Sci-
ence, pages 351–360. Springer, 2006.

[3] C. A. C. Coello and G. T. Pulido. A Micro-Genetic Al-
gorithm for Multiobjective Optimization. In Evolutionary
Multi-Criterion Optimization: First International Confer-
ence, EMO 2001, page 126, Zurich, Switzerland, 2001.
Springer.

[4] E. Damiani, V. Liberali, and A. Tettamanzi. Evolutionary
design of hashing function circuits using an fpga. In In-
ternational Conference on Evolvable Systems (ICES), pages
36–46. Springer, 1998.

[5] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast Eli-
tist Non-Dominated Sorting Genetic Algorithm for Multi-
Objective Optimization: NSGA-II. In Proceedings of the
Parallel Problem Solving from Nature VI Conference, pages
849–858, Paris, France, 2000. Springer.

[6] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and
J. Pruyne. A Worldwide Flock of Condors: Load Sharing
Among Workstation Clusters. In Future Gener. Comput.
Syst., volume 12, pages 53–65, Amsterdam, The Nether-
lands, 1996. Elsevier Science Publishers B. V.

[7] P. Kaufmann and M. Platzner. Multi-objective Intrinsic
Hardware Evolution. In Proceedings of the 2006 MAPLD
International Conference, Washington D.C., USA, Septem-
ber 2006. To appear.

[8] P. Kaufmann and M. Platzner. Toward Self-adaptive Em-
bedded Systems: Multi-objective Hardware Evolution. In
P. Lukowicz, L. Thiele, and G. Tröster, editors, Proceed-
ings of the 20th International Conference on Architecture of
Computing Systems (ARCS 2007), volume 4415 of LNCS,
pages 199–208. Springer, MAR 2007.

[9] J. R. Koza. Genetic Programming II: Automatic Discovery
of Reusable Programs. MIT Press, Cambridge, MA, USA,
1994.

[10] J. Larus. SPIM - A MIPS32 Simulator.
[11] Liu, Rui and Zeng, Sang-you and Ding, Lixin and Kang,

Lishan and Li, Hui and Chen, Yuping and Liu, Yong and
Han, Yueping. An Efficient Multi-Objective Evolution-
ary Algorithm for Combinational Circuit Design. In First
NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), pages 215–221. IEEE, 2006.

[12] K. L. Metlov. JEL - Library for Evaluating a Simple Single
Line Expressions in Java., 2006.

[13] J. Miller and P. Thomson. Cartesian Genetic Programming.
In Proceedings 3rd European Conference on Genetic Pro-
gramming (EuroGP), pages 121–132. Springer, 2000.

[14] G. T. Pulido and C. A. C. Coello. The Micro Genetic Algo-
rithm 2: Towards Online Adaptation in Evolutionary Multi-
objective Optimization. Springer, 2003.

[15] J. Torresen. Two-Step Incremental Evolution of a Prosthetic
Hand Controller Based on Digital Logic Gates. In Pro-
ceedings of Evolvable Systems: From Biology to Hardware:
4th International Conference on Evolvable Hardware (ICES
2001), volume 2210 of Lecture Notes in Computer Science,
Tokyo, Japan, 3–5 Oct. 2001. Springer.

[16] J. A. Walker and J. F. Miller. Improving the Evolvability
of Digital Multipliers Using Embedded Cartesian Genetic
Programming and Product Reduction. In Evolvable Systems:
From Biology to Hardware, 6th International Conference,
ICES 2005, Sitges, Spain, September 12-14, 2005, volume
3637 of Lecture Notes in Computer Science, pages 131–142.
Springer, 2005.

[17] S. Zeng, S. Yao, L. Kang, and Y. Liu. An Efficient Multi-
objective Evolutionary Algorithm: OMOEA-II, 2005.

[18] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improv-
ing the Strength Pareto Evolutionary Algorithm. Technical
Report 103, Swiss Federal Institute of Technology, Glorias-
trasse 35, CH-8092 Zurich, Switzerland, 2001.

8

