
MULTIOBJECTIVE INTRINSIC HARDWARE EVOLUTION

Paul Kaufmann, Marco Platzner

University of Paderborn
Warburger Str. 100

33098 Paderborn, Germany
email: {paul.kaufmann,platzner}@upb.de

ABSTRACT
Evolutionary design of digital circuits reveals the poten-

tial to provide autonomous systems with the properties of
self-adaptation, self-optimization and functional recovery.
Especially for functions that are rated by a data-dependent
and time-varying functional quality, rather than an absolute
measure of correctness, evolutionary techniques are attrac-
tive.

In this paper, we present a novel approach to evolvable
embedded systems that is able to adapt to both slow and rad-
ical changes in the environment and the system state, respec-
tively. First, a multiobjective evolutionary search algorithm
with a selection scheme based on Pareto dominance is used
to compute a set of reasonable trade-offs. Then, the deci-
sion is made which solution to use for the present situation.
During operation, the system adapts to slowly changing en-
vironmental conditions by the evolutionary search process.
To handle radical changes, precomputed dominant solutions
are stored in the system. When a radical change occurs, the
system switches to a ”good-enough” solution, and the online
evolutionary process is restarted.

In our work, we treat evolutionary circuit design as a
multiobjective optimization problem that tries to evolve func-
tionally good or correct FPGA circuits with minimal area
and maximal speed. Additionally, the optimization problem
can be specified by constraints as, for example, usable area
of a chip or a minimal functional quality of a circuit.

1. INTRODUCTION

In the last decades, natural computing methods which take
problem solving principles from nature have gained popu-
larity. Among others, natural computing includes evolution-
ary computing. Evolutionary computing covers population-
based, stochastic search algorithms inspired by principles
from evolution theory. An evolutionary algorithm tries to
solve a problem by keeping a set (population) of candidate
solutions (individuals) in parallel and improving the quality
(fitness) of the individuals over a number of iterations (gen-
erations). To form a new generation, genetically-inspired

operators such as crossover and mutation are applied to the
individuals. A fitness-based selection process steers the pop-
ulation towards better candidates.

Evolvable hardware denotes the combination of evolu-
tionary algorithms with reconfigurable hardware technology
to construct self-adaptive and self-optimizing hardware sys-
tems. The term evolvable hardware was coined by de Garis
[1] and Higuchi [2] in 1993. Evolvable hardware is still a
rather young area of research, and many issues and prob-
lems have not been addressed yet. Two main results have
been achieved so far: First, evolutionary techniques are able
to generate astonishing circuits that are totally different from
classically engineered circuits, and sometimes even supe-
rior [3]. Second, for applications with over the time vary-
ing specifications, very promising first results were achieved
that indicate the potential of evolutionary techniques to con-
struct self-adapting systems. Examples include evolved con-
trollers for prosthetic hands and robot navigation [4].

In this paper, we argue that circuit design is a multiobjec-
tive optimization problem. Apparently, a circuit implemen-
tation reveals properties such as the required silicon area, the
resulting delay (speed), and the power consumption. In clas-
sic circuit engineering, we seek to design correct functions
(with regard to some specification) while either respecting
constraints on area, speed and power or treating these pa-
rameters as optimization goals.

At this point, we can classify functions into two groups.
The first group are functions that reveal a binary correct-
ness property. The prime example are arithmetic functions,
where we typically accept nothing less than 100% correct-
ness. Actually, we view correctness here as a constraint.
Much of the work in evolvable hardware has been concerned
with design of arithmetic circuits at the gate level. While in
a few cases the evolved circuits showed marginal area im-
provements over classic circuit designs, the input sizes were
restricted to only a few bits and the design times were ex-
cessive. It seems unrealistic that larger designs can be suc-
cessfully evolved that way.

The second group of functions does not have a binary
correctness, just a quality metrics. A prominent example is

mailto:paul.kaufmann@upb.de
mailto:platzner@upb.de

the hashing function. The quality of a hashing function can
be measured by its ability to distribute the input keys evenly.
Since this depends on the input key distribution, we deal
with a specification that varies over the time. Other exam-
ples include image compression, prosthetic hand control and
robot navigation. These functions are ideal candidates for
evolutionary design. The optimal solutions depends on the
input data, which is the sole motivation for self-adaptation.

The main contributions of this paper is the combination
of multiobjective optimization with evolvable hardware de-
sign. Up to now, little work has been presented that treats
evolutionary hardware design as a multiobjective optimiza-
tion problem. We propose TSPEA2 as a new algorithm vari-
ant that combines elements from previous multiobjective op-
timizers, and compare it to known approaches by means of
test functions.

The paper is organized as follows: Section 2 reviews re-
lated work in multiobjective optimization of evolvable hard-
ware. Section 3 presents the basic model used in our work, a
variant of the Cartesian Genetic Programming model, along
with the main genetic algorithm. In Section 4, we discuss
details of the multiobjective optimizers including our new
technique called TSPEA2. Experiments and results are pre-
sented in Section 5. Finally, Section 6 summarizes and con-
cludes the paper.

2. MULTIOBJECTIVE OPTIMIZATION OF
DIGITAL CIRCUITS

Many optimization problems, especially in engineering dis-
ciplines, involve several objectives. Often, the objectives are
conflicting and cannot be optimized simultaneously. Then,
a trade-off has to be found between the different objectives.
One way to deal with trade-offs is to make a decision on
the relative importance of the single objectives and merge
them into a scalar objective function. A different approach
is to compute a set of reasonable trade-offs first, and then
make the decision which solution to use for an implementa-
tion. The definition of a reasonable trade-off can be based
on the concept of Pareto dominance. A solution x domi-
nates another solution y when x is superior or equal to y in
all objectives, and superior in at least one objective. A non-
dominated solution is denoted as a Pareto point. Evolution-
ary algorithms are population-based methods and are thus
well-suited to approximate the set of Pareto points (Pareto
front) in a single optimization run.

Research in multiobjective evolutionary algorithms has
identified two key issues [5]: minimizing the distance be-
tween the approximated and the real Pareto front, and main-
taining a diverse population to avoid premature convergence
to a single objective. Recently, an algorithm called Strength
Pareto Evolutionary Algorithm (SPEA2) was introduced [5].
SPEA uses Pareto-based ranking and stores non-dominated

solutions externally. Diversity is preserved by a Pareto-based
niching method. SPEA has been applied to a number of de-
sign problems [6] [7].

Closest to our work is the work of Trefzer et al. [8] who
introduced MO-Turtle GA for evolving analog circuits built
of operational amplifiers on a field-programmable transistor
array. The authors consider a large number of objectives, in-
cluding ”pull-to-rails”, dc offsets, slew rates, etc. MO-Turtle
GA is a multiobjective non-dominated sorting genetic algo-
rithm based on NSGA-II, presented in [9]. At each genera-
tion, the population of individuals consists of two parts. The
first part contains the non-dominated individuals from the
previous population. The second part contains mutated and
recombined individuals that have been additionally selected
due to a random and a main objective. By this, MO-Turtle
GA tries to guide the evolution process to solutions that ex-
cel in the main objective while maintaining a high diversity
of the population.

Another approach to optimize for correctness and hard-
ware area is to use a multi-stage fitness function. Such an ap-
proach was used by Kalganova and Miller [10]. They evolve
arithmetic circuits based on a Cartesian Genetic Program
model (see Section 3.1). In this model, the chromosome
represents a two-dimensional array of simple gates and their
interconnect, which is restricted to feed-forward wires. Kal-
ganova and Miller defined the fitness F of a chromosome
as:

F =
{
c if c < 100%,
c+ γ else (1)

In Equation 1, c denotes the percentage of the correct output
bits of the circuit and γ is the number of gates in the array
that are not used by an individual. As long as an individual
is not correct, the selection process bases solely on the func-
tional quality. Once an individual is correct, the required
area is taken into account.

In a similar way, Coello et al. [11] evolved fully func-
tional circuits while minimizing the number of gates. The
authors proposed a multiobjective search algorithm, rede-
fining the initial single objective in a way that treats the func-
tion of each circuit output as a separate objective. All these
objectives, actually being constraints, have to be met by the
evolutionary search process. In the first stage the algorithm
maximizes the number of complied constraints. If all con-
straints are satisfied, the algorithm increases the fitness of
the circuit by adding the number of ”WIRE” gates (gates
that do not contribute to the logic function) to the fitness
value.

3. BASIC CIRCUIT MODEL

3.1. Cartesian Genetic Programming

We use the Cartesian Genetic Programming (CGP) model
in our work. Cartesian genetic programs have been intro-

Table 1. CGP model parameters
ni number of primary inputs
no number of primary outputs
nc number of columns
nr number of rows
nn number of gate inputs
l levels back parameter
nf number of gate functions

duced by Miller and Thomson in [12]. CGP is a structural
hardware model, where a circuit is formed by combinational
logic blocks arranged in a two-dimensional array and an in-
terconnect (wires) between the blocks. The CGP model is
highly parameterizable; the parameters we use in this work
are summarized in Table 1.

The array consists of nc × nr combinational blocks, ni

primary inputs, and no primary outputs. The primary inputs
can be connected to the inputs of any logic block in the ar-
ray. A logic block in column c has nn inputs that can be
connected to the columns c− l, . . . , c−1 of the array and to
the primary inputs, respectively. This ensures that no com-
binational feedback loops are generated. A combinational
block implements one out of nf different logic functions of
its inputs.

An individual is defined by its chromosome (genotype).
The length of the chromosome is given by nc ·nr(nn +1)+
no. Each of the logic blocks in the array is defined by nn +1
values, one for each input and one for the logic function.
Additionally, an no-tuple of values selects the block outputs
that are connected to the primary outputs of the array.

Figure 1 presents an example for a GCP model instance
with the parameters ni = 4, no = 4, nc = 5, nr = 4, nn =
2, nf = 9, and l = 4. In this example, the nine possi-
ble logic block functions have been chosen as AND, ONE,
XOR, NULL, NAND, NOT, NOR, OR, and XNOR. Fig-
ure 1 illustrates a successfully evolved 2× 2 bit-adder.

3.2. Reference Algorithm GA

As a reference, we have implemented a standard single-ob-
jective genetic algorithm (GA) on the GCP model. The
parameters are set as follows: Top 5% of the individuals
are selected and transferred without any modification to the
next generation. The recombination probability is chosen to
be 90%. The individuals are recombined uniformly. This
means the two parents’ logic blocks with according wires at
position i have the same probability to become the child’s
logic block at the same position i. The mutation rate is a
sensitive parameter with only a rather small interval inside
which the evolutionary search process converges well. We
choose the mutation rate such that only one combinational

block or wire is mutated each time the mutation operator
is applied. In our implementation each recombined child is
mutated once. These parameter settings have been used for
the experiments described in the following section.

3.3. Genotype-Phenotype Mapping, Fitness Evaluation

The main reason of the popularity of the CGP model is that
this structural model resembles well the architectures of field-
programmable reconfigurable hardware arrays. The block
functions can be set from simple two-input gates, over nn

input lookup tables, to complex word-based arithmetic oper-
ators. The interconnect can model bit wires or busses. How-
ever, the routing resources of real FPGAs are much more
versatile than the restricted interconnect of the CGP model.
The CGP model uses such a restricted interconnect model
mainly to keep the genotype (chromosome length) short and,
thus, to reduce the complexity of the evolutionary operators.

Generally, the genotype has to be mapped to a corre-
sponding phenotype for evaluating the fitness. The pheno-
type represents the actual circuit and is achieved from the
genotype by removing all blocks of the array that do not
contribute to the outputs. Note that there might still be re-
dundancy in the phenotype. An important previous result
with the CGP model [12] is that propagating redundant and
currently unused structures inside the chromosomes through
the search process of the evolutionary algorithm increases
the speed of convergence.

In this paper, we are interested in evaluating the circuit’s
fitness with regard to three objectives: the functional qual-
ity, the required hardware area, and the speed of the circuit.
Depending on the effort spent for the genotype-phenotype
mapping, we have three variants for the fitness evaluation:

1. The functional quality of a circuit is determined by
logic simulation. As we deal with combinational cir-
cuits, logic simulation actually reduces to computing
the circuit’s output values. The area of the circuit is
estimated by counting the number of logic of blocks
that are connected directly or indirectly to outputs.
Routing is not taken into account. The delay of the cir-
cuit is estimated by the circuit’s level, i.e., the number
of logic blocks on the longest path from any primary
input to any primary output. We currently use this
simple genotype-phenotype mapping in our work.

2. To improve the accuracy of the area and speed esti-
mates, FPGA backend tools (place & route) will be
included in the fitness evaluation in a next step. Syn-
thesis and technology-mapping is not necessary as the
blocks of the CGP model can be mapped one-to-one
to logic blocks of the target hardware.

3. The genotype will be placed, routed and configured
onto the target device. This allows evaluating the func-

Fig. 1. 2×2 bit-adder: The data-path for the MSB is highlighted. {G, ni=4, no=4, nn=2, F, nf=9, nr=4, nc=5, l=4}, G={0 0 -1
3 1 6 3 2 8 2 0 8 6 3 9 5 7 8 x 1 6 1 3 8 3 0 5 2 0 6 11 9 14 9 2 6 15 11 7 x 12 6 7 14 8 11 3 6 6 9 1 7 5 6
18 15 -1 5 15 0 13 21 14 x}, F={AND=8, ONE=-1, XOR=6, NULL=0, NAND=7, NOT=5, NOR=1, OR=14, XNOR=9}

Fig. 2. Structure of SPEA2 and TSPEA2 optimizers.

tional quality by executing the circuit rather than sim-
ulating it. We intend to use this genotype-pheno-type
mapping in the future to speed up the fitness evalua-
tion and, thus, the evolutionary algorithm.

4. MULTIOBJECTIVE OPTIMIZATION
ALGORITHMS

4.1. SPEA2

SPEA2 is a recent multiobjective evolutionary optimizer [13]
with a structure shown in Figure 2. SPEA2 maintains two
sets of individuals: an archive that contains non-dominated
individuals and a breeding population. In each generation,
the two sets are merged and the fitness of the individuals is
evaluated. The non-dominated individuals are then copied to
the new archive. If the archive exceeds a pre-defined maxi-
mal size, SPEA2 applies a nearest neighbor density estima-

tion technique to thin out clusters on the Pareto front. The
fitness assigned to an individual considers the number of in-
dividuals it dominates - the dominance count, the number of
individuals that are dominators - the dominance rank, and a
density estimate based on the k-th nearest neighbor method.
All individuals undergo a binary tournament selection which
selects parents for the recombination and mutation.

Therefore, SPEA2 is an elitism-based algorithm using
non-dominated sorting and k-th nearest neighbor density es-
timation. The goal of SPEA2 is to approximate the Pareto
front well while keeping diversity.

4.2. TSPEA2

TSPEA2 is an algorithm we have devised to put an increased
selection pressure on one objective while trying to keep di-
versity. This should be beneficial for evolving circuits with
a correctness property. Compared to SPEA2, we expect de-
graded fitness values for the other objectives. Both SPEA2
and TSPEA2 use an archive and a breeding population and
a selection scheme based on Pareto dominance ranking. TS-
PEA2, however, checks as a first selection rule in a binary
tournament whether one of the two individuals dominates
the other regarding the main objective. TSPEA2 has been
motivated by an earlier algorithm MO-Turtle GA [8], that
preferred a main and several random objectives during the
evolution of analog circuits.

5. EXPERIMENTS AND RESULTS

We have evolved several test functions with GA, SPEA2,
and TSPEA2. In this section, we report on typical results for
a 6-parity function and a hashing function. The first function
is an example for a function with a correctness property. We
are only interested in circuits that are 100% correct. In con-
trast to that, the functional quality of the hashing function is
the distribution of indices achieved when keys are mapped
to indices. The functional quality of the hashing function

does not need to be perfect. Moreover, the perfect hashing
function cannot be computed a-priori as it depends on the
distribution of the input keys.

The logic blocks in our CGP model have 2 inputs (sim-
ple gates) and the functional set available comprises the 9
functions shown in Figure 1. The parameters for crossover
and mutation used in SPEA2 and TSPEA2 are set as de-
scribed in Section 3.2. The tournament selection operator is
configured to execute two tournaments before selecting one
of the competitors as a parent. For all evolutionary algo-
rithms, we conducted 10 optimization runs with a maximum
of 100.000 generations.

The delay of a circuit is in the range {0, . . . , nc + 1}. A
delay of 0 means that the longest path of the circuit connects
an input directly with an output. A delay of nc + 1 indicates
that none of the outputs is connected to an input. The fitness
with respect to speed is determined as:

speed(c) = 1− delay(c)
nc + 1

(2)

The speed equals 1 for the fastest possible circuit (a circuit
that maps primary inputs directly to primary outputs) and 0
for a circuit that has no connection at all from primary inputs
to primary outputs.

The number of logic blocks used by a circuit, denoted as
used blocks(c), is in the range {0, . . . , nc · nr}. Based on
this number the fitness with respect to area is defined as:

area(c) = 1− used blocks(c)
nc · nr

(3)

A circuit with minimal area gets an area value of 1, a circuit
that utilizes all available logic blocks has an area value of 0.

5.1. 6-parity

The used parameters for the CGP model are nc = nr =
ni = 6, l = nc

2 . For the parity function, a circuit’s c fitness
with respect to functional quality is calculated as follows:

f(c) =
1

1 +
∑

i∈B6(parity(i)− c(i))2
. (4)

Thus, a correct parity function has a functional quality of 1.
It is an easy task for a conventional GA to evolve a

correct circuit for the 6-parity function. Using a popula-
tion of size 100, only 69 generations are needed on average
to evolve a fully functional circuit. In contrast to the GA,
SPEA2 with an archive and population size of 100 evolved
only four correct solutions overall and needed more than
30000 generations on average. When preferring the func-
tional quality as a main objective in TSPEA2, the search
process converges faster. On average, 903 generations are
needed for TSPEA2 to find a correct 6-parity circuit. Fig. 3
compares the resulting fitness development for the algorithms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20000 40000 60000 80000 100000

fu
nc

tio
na

l q
ua

lit
y

(1
=

pe
rf

ec
t)

generations

average GA functional quality
average TSPEA2 functional quality

average SPEA2 functional quality

Fig. 3. Evolving the 6-parity function. Average fitness de-
velopment of 10 experiments for GA, SPEA2 and TSPEA2.
In each experiment SPEA2 and TSPEA2 are executed for
100.000 generations. GA is stopped after evolving a 6-parity
function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

sp
ee

d

area

TSPEA2 individuals
SPEA2 individuals

GA individuals

Fig. 4. Evolving the 6-parity function. All pareto-dominant
individuals after 100.000 generations each 10 experiments
of SPEA2 and TSPEA2 are drawn. Further the best indi-
viduals found by GA are plotted. The dominant solution is
found by SPEA2 and TSPEA2. Classical GA discovers sub-
dominant solutions.

Fig. 4 shows the speed and area parameters for all cor-
rectly evolved circuits. Both SPEA2 and TSPEA2 found the
same dominant solution. Moreover, TSPEA2 managed to
discover a more diverse solution set compared to SPEA2.
The conventional single-objective GA evolved correct cir-
cuits with inferior area and speed.

5.2. Hashing function

We have chosen the hashing function as a test case because
this function has been evolved previously by Tettamanzi et

Fig. 5. Evolving the hashing function. Average fitness development of 10 experiments for GA, SPEA2, and TSPEA2.

(a) area (b) speed

Fig. 6. Evolving the hashing function. 2D projections of the Pareto front for two typical populations. Also the objectives of
the best individuals found by the GA during the 10 experiments are plotted.

Table 2. Evolving the hashing function. Reached functional
qualities after 1000 generations.

GA SPEA2 TSPEA2
best 0.135 0.084 0.125
worst 0.094 0.075 0.092
average 0.114 0.079 0.110

al. [14]. These authors use a CGP model similar to that of
Miller and Thomson [12]. The main difference is that wires
can connect only to gates in the same row. We have relaxed
this constraint which leads to an improvement using a con-
ventional GA. To be able to compare the experiments, we
stay consistent with CGP-parameters used in [14]: nc = 8,

nr = 8, l = 8 and nn = 4. The differences to the CGP-
model parameters of Tettamanzi et al. in [14] are the relax-
ation of the constraint that wires could only connect func-
tional blocks in the same row and in contrast to the unre-
stricted functional set of Tettamanzi et al. [14], a small func-
tional set showed in Figure 1.

The problem statement formulated in [14] is as follows:
Find a function h : B16 → B8 which maps a set M of
212 keys to a set N of 28 indices in the most uniform way
possible. The fitness function is defined as:

f(c) =
1

1 + 1
|N |
∑|N |

i=1(|{j|j ∈M, c(j) = i}| − |M |
|N |)

2

(5)
Tettamanzi et al. [14] evolved the best individual with a fit-
ness value of 0.097785 after 257 generations. On our, re-

garding the interconnect less constrained CGP model, the
single-objective GA reaches easily an average fitness be-
yond 0.1, as is shown in Figure 5. After 257 generations,
the best individual shows a fitness of 0.116469.

Table 2 lists the resulting functional qualities (best, worst
and average case) after iterating for 1000 generations. As
expected, TSPEA2 perform close to GA while SPEA2 lags
behind. The slower speed of convergence of SPEA2 is also
clearly illustrated by Figure 5.

Figure 6 displays functional quality vs. area and func-
tional quality vs. speed – two-dimensional projections of
the Pareto front – after evolving 1000 generations. As ex-
pected, our experiments confirmed that a conventional GA
optimizes the functional quality faster than SPEA2 and TS-
PEA2. SPEA2 and TSPEA2 excel, however, in evolving
solutions with improved area and speed.

Comparing SPEA2 with TSPEA2, we note that SPEA2
did not evolve individuals with better area or speed. In fact,
all individuals found by SPEA2 are dominated by individ-
uals generated by TSPEA2. This is an interesting observa-
tion, as one would expect that TSPEA2 which prefers the
functional quality over the other objectives, leads to a some-
what deteriorated Pareto front. This result has been consis-
tent over all simulation runs with the hashing function. A
possible explanation is that in our experiments the objec-
tives are not necessarily conflicting. Driving the evolution
towards functional quality will then also improve area and/or
speed. However, this may not be generalized as design ex-
perience shows that for many circuits the functional quality,
speed and area are indeed conflicting.

6. SUMMARY AND FURTHER WORK

In this paper, we have presented an multiobjective evolution-
ary optimizers and compared the known algorithm SPEA2
with the newly devised technique TSPEA2 and a baseline
GA. We have presented comparisons of these algorithms for
two test functions. An intrinsic multiobjective evolutionary
algorithm designs hardware circuits and maintains a set of
Pareto-dominant solutions with respect to functional quality,
area and speed. The system uses evolutionary adaptation to
slow changes in the environment and switches to preevolved
alternatives as reaction to drastic changes in the available re-
sources.

In further work will focus on the scalability problem and
investigate variants of the CGP model with more coarse-
granular building blocks. Moreover, we will validate our
observations on larger test functions.

7. ACKNOWLEDGEMENT

This work was supported by the German Research Foun-
dation under project number PL 471/1-1 within the priority

program Organic Computing.

8. REFERENCES

[1] H. de Garis, “Evolvable Hardware – Genetic Programming of a Dar-
win Machine,” in Proceedings International Conference on Artificial
Neural Networks and Genetic Algorithms (ICANNGA). Springer,
1993.

[2] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya,
“Evolving Hardware with Genetic Learning: A First Step Towards
Building a Darwin Machine,” in Proceedings 2nd International Con-
ference on Simulation of Adaptive Behavior (SAB). MIT Press, 1993,
pp. 417–424.

[3] A. Thompson and P. Layzell, “Analysis of Unconventional Evolved
Electronics,” Communications of the ACM, vol. 42, no. 4, pp. 71–79,
1999, ACM Press.

[4] T. Higuchi and N. Kajihara, “Evolvable Hardware Chips for Industrial
Applications,” Communications of the ACM, vol. 42, no. 4, pp. 60–66,
April 1999, ACM Press.

[5] E. Ziztler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm for Multiobjective Optimiza-
tion.” in Evolutionary Methods for Design, Optimisation, and Con-
trol, 2002, pp. 95–100.

[6] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli, “Design Space
Exploration of Network Processor Architectures,” in Proceedings 1st
Workshop on Network Processors at the 8th International Symposium
on High-Performance Computer Architecture (HPCA), 2002.

[7] M. Eisenring, L. Thiele, and E. Zitzler, “Conflicting Criteria in
Embedded System Design,” in IEEE Design & Test of Computers,
vol. 17, no. 2. Los Alamitos, CA, USA: IEEE Computer Society
Press, April-June 2000, pp. 51–59.

[8] M. Trefzer, J. Langeheine, K. Meier, and J. Schemmel, “Operational
Amplifiers: An Example for Multi-objective Optimization on an Ana-
log Evolvable Hardware Platform.” in ICES. Springer, 2005, pp.
86–97.

[9] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, “A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective Optimiza-
tion: NSGA-II,” in Proceedings of the Parallel Problem Solving from
Nature VI Conference. Paris, France: Springer, 2000, pp. 849–858.

[10] T. Kalganova and J. Miller, “Evolving More Efficient Digital Cir-
cuits by Allowing Circuit Layout Evolution and Multi-Objective Fit-
ness,” in The First NASA/DoD Workshop on Evolvable Hardware.
Pasadena, California: IEEE Computer Society, 19-21 July 1999, pp.
54–63.

[11] C. A. Coello Coello, A. Hernández Aguirre, and B. P. Buckles, “Evo-
lutionary Multiobjective Design of Combinational Logic Circuits,” in
Proceedings of the Second NASA/DoD Workshop on Evolvable Hard-
ware. Los Alamitos, California: IEEE Computer Society, 2000, pp.
161–170.

[12] J. F. Miller and P. Thomson, “Cartesian Genetic Programming,” in
Proceedings of the European Conference on Genetic Programming.
London, UK: Springer-Verlag, 2000, pp. 121–132.

[13] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm,” Swiss Federal Institute of
Technology, Gloriastrasse 35, CH-8092 Zurich, Switzerland, Tech.
Rep. 103, 2001.

[14] E. Damiani, V. Liberali, and A. Tettamanzi, “Evolutionary Design of
Hashing Function Circuits Using an FPGA.” in ICES. London, UK:
Springer-Verlag, 1998, pp. 36–46.

	 Introduction
	 Multiobjective Optimization of Digital Circuits
	 Basic Circuit Model
	 Cartesian Genetic Programming
	 Reference Algorithm GA
	 Genotype-Phenotype Mapping, Fitness Evaluation

	 Multiobjective Optimization Algorithms
	 SPEA2
	 TSPEA2

	 Experiments and Results
	 6-parity
	 Hashing function

	 Summary and Further Work
	 Acknowledgement
	 References

