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Abstract— This work investigates the effects of the periodization
of local and global multi-objective search algorithms. To this,
we introduce a model for periodization and define a new
multi-objective evolutionary algorithm adopting concepts from
Evolutionary Strategies and NSGAII. We show that our method,
especially when periodized with standard multi-objective ge-
netic algorithms, excels for the evolution of digital circuits on
the Cartesian Genetic Programming model as well as on some
standard benchmarks such as the ZDT6.

I. INTRODUCTION

Multi-criteria optimization is an important task in many
application domains. With x as vector of decision variables
and f as vector of objective functions, the task of concur-
rently minimizing multiple objective functions can be stated
as:

minx∈Rnf(x) = (f1(x), f2(x), . . . , fk(x))
T : Rn → Rk

To be able to minimize, a vector-valued order relation has
to be defined on the images of x under f . A prominent
example for such a relation is Pareto-dominance stating for
two decision vectors x1, x2 ∈ Rn: x1 dominates x2 if

x1 ≺ x2 ⇔ ∀i : fi(x1) ≤ fi(x2) ∧ ∃j : fj(x1) < fj(x2).

Additionally, weak Pareto-dominance is defined as:

x1 � x2 ⇔ ∀i : fi(x1) ≤ fi(x2).

If x1 � x2 and x2 � x1, it follows that f(x1)
!
= f(x2). If

neither condition holds, x1 and x2 are incomparable.

In recent years, several Pareto-based multi-objective genetic
algorithms have been presented that show excellent per-
formance when optimizing for multiple and often conflict-
ing goals. In our work, we are interested in multi-criteria
optimization of digital hardware [1], [2] using the Carte-
sian Genetic Programming model [3] to represent circuits.
Experience shows that for this specific application domain
global multi-objective genetic optimizers can be rather slow,
especially when compared with local Evolutionary Search
(ES) techniques [4]. However, in the presence of multiple
objectives local search techniques typically work with fitness
functions that are linear combinations of the single objec-
tives, rather than with the Pareto-based principle.
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In this paper, we describe a periodization technique that
alternates the execution of global and local evolutionary
optimizers. Our technique is inspired by the earlier work
of Schwiegelshohn [5] and Ierardi [6] on Periodic Sorting
Networks (PSN) where different sorting meshes are applied
alternately on the input data. We extend this idea by propos-
ing a periodized execution model that blends algorithm prop-
erties, functionality and convergence behavior in a simple and
straight-forward way. A typical example is the combination
of global search for the early phase of an optimization run
with local search for the final phase [7], [8].

We introduce a novel local search algorithm termed hybrid
Evolutionary Strategy (hES), a synthesis of a standard ES
and a Pareto set preserving technique, and investigate its
performance when periodized with multi-objective genetic
optimizers NSGAII and SPEA2. The novelty of hES is that
it applies a µ + λ ES on the Pareto-dominant individu-
als obtained by a multi-objective genetic algorithm while
keeping diversity in and avoiding deterioration of the Pareto
set.

The remainder of the paper is structured as follows: Sec-
tion II presents related work on hybrid evolutionary search
techniques. Our periodization model is defined in Section III,
followed by a discussion of the novel hybrid Evolutionary
Strategy (hES) in Section IV. Sections V and VI define
the benchmarks and fitness metrics used in our experiments,
and Section VII presents the results. Finally, Section VIII
concludes the paper.

II. RELATED WORK

Hernández-Dı́az et al. [7] presented a two-stage multi-
objective evolutionary algorithm based on Differential Evo-
lution (DE) and Rough Sets (RS) theory. In the first stage,
the authors employed a fast converging multi-objective DE
scheme to compute an initial Pareto front approximation. In
the second stage, they improve the Pareto set diversity using
RS theory for detecting loosely-covered regions. The algo-
rithm’s performance is verified on the standard ZDT{1,. . . ,6}
and DTLZ{1,. . . ,4} benchmarks [9], [10]. To compare the
computed Pareto sets, the authors used three metrics, the
unary additive epsilon indicator [11], the standard deviation
of crowding distances (SDC) [12] and the space covered
by a Pareto set [13]. The proposed algorithm generally
outperformed NSGAII, except on the DTLZ2 and DTLZ4
benchmarks using the SDC metric.

Talbi et al. [8] proposed a similar two-stage approach and



used a multi-objective genetic algorithm (GA) to calculate a
first rough Pareto front approximation, followed by a local
search technique for refining the approximation. The authors
observed improved behavior to a GA-only approach as soon
as the complexity of the test problems increases.

Zapotecas et al. [14] presented a hybrid approach combining
the global optimizer NSGAII with the local optimizers of
Nelder and Mead [15] and the golden section method.
The authors enhanced the exploratory NSGAII by local
search methods in order to reduce the number of fitness
evaluations. The hybrid algorithm was compared to standard
NSGAII on continuous benchmarks ZDT{1,. . . ,4}, ZDT6
and DTLZ{1,2} using the metrics inverted generational dis-
tance [16], spacing [17] and coverage indicator [18]. With
the exception of the ZDT6 and DTLZ{1,2} benchmarks in
combination with the spacing metric, the hybrid algorithm
outperformed NSGAII.

Harada et al. [19] analyzed GA-and-LS and GA-then-LS
schemata in which local search is applied either after each
generation or after a completed run of a genetic algorithm.
The authors concluded that GA-then-LS is superior to GA-
and-LS on multiple benchmarks and used generational and
Pareto-optimal front distances [12] for comparison.

Close to our approach is the work of Ishibuchi et al. [20],
[21]. The authors discuss various implementations of stan-
dard multi-objective optimizers such as SPEA2 and NSGAII
combined with local search. The key idea of their approach
is to periodically swap between different optimizers during
a run. The authors conclude that the performance of such a
hybrid optimizer is sensitive to the balance between global
and local search. However, by carefully weighting global
and local search strategies the periodized hybrid optimizer
outperformed the standard multi-objective optimizer.

In our work, we investigate a novel hybrid Evolution-
ary Strategy (hES) and its periodization with the multi-
objective optimizers NSGAII and SPEA2 in a GA-and-LS
manner.

III. THE PERIODIZATION MODEL

In this section, we formalize the periodized execution
model combining global and local search techniques. Let
A = (a1, a2, . . . , an) be the set of algorithms used
in the periodization. As an illustrative example, consider
A = {GA1,GA2,LS}. For a hypothetical periodized algo-
rithm that executes a single step/generation of GA1, followed
by two steps of LS, then a single step of GA2 and two steps
of LS, the index sequence I for the algorithm selection is
given by (a1, a3, a2, a3), and the repetition sequence F is
(f1, f2, f3, f4) = (1, 2, 1, 2).

While in this specific example, F is a vector of constants, the
number of repetitions can be adaptively adjusted based on the
history H of the optimization run. In particular, global GAs
with fast convergence in the beginning of an optimization

run could be repeated more often in the early search phases,
while local search algorithms that excel in improving nearly
optimal Pareto sets could be used more intensively in the
final optimization phase.

With t as the current generation number, H as the history
of the current optimization run, A = (a1, a2, . . . , an),
n ∈ N as the set of algorithms used in the periodization,
I = (i1, i2, . . . , im), m ∈ N, ik ∈ (1, 2, . . . , n) as the set of
indices for the selected algorithms in the execution sequence
and F = (f1, f2, . . . , fm), fk(t,H) → N as the number of
repetitions for the algorithms in I , the complete periodized
execution model P can be defined as:

P = AFI

= (a
f1(t,H)
i1

, a
f2(t,H)
i2

, . . . , a
fm(t,H)
im

).

The history H can be large if considering the complete
information of an optimization run, or more compact if
considering, for example, only the space dominated by
the current Pareto-set. In our experiments, we choose
fk(t,H)) := fk(t) ≡ const.

IV. THE HYBRID ES

Evolutionary Strategies (ES) were introduced by Rechen-
berg [22] and Schwefel [23] and rely solely on a mutation
operator to discover the search space. The {µ ,

+λ} ES uses
µ parents to create λ offspring individuals and selects µ
new parents from all individuals in case of a ’+’ variant
or from the new individuals in case of the ’,’ variant,
respectively.

Our new hES local search technique is a 1+ λ ES designed
for periodization with multi-objective genetic optimization
algorithms. In particular, we include two concepts from the
Elitist Non-dominated Sorting GA (NSGAII) [24] in hES:
the fast non-dominated sorting and the crowding distance
as diversity preserving metric. Fast non-dominated sorting
calculates the different non-domination sets for a set of
points in the objective space. The crowded distance for a
point is defined as the hyper volume of a cuboid bounded
by the adjoining points in the same non-domination set.
Consequently, the crowded distance creates an order, denoted
as ≺n, on the points of a non-domination set. Our hES
local search technique uses fast non-dominated sorting to
select parents for offspring creation, and crowded distances
to decide which of the offspring individuals might be skipped
in order to keep the Pareto set diverse.

In summary, the key ideas for our hES algorithm are:

1) A local search algorithm is executed for every element
of a given set of solutions. Exactly one individual
from a parent and its offspring individuals proceeds
to the next population. Offspring individuals that are
mutually non-dominant to their parents but have a
different Pareto vector are skipped.



2) Genetic drift, as presented by Miller in [3], is achieved
by skipping a parent if at least one of its offspring
individuals holds an equal Pareto vector.

3) Parents and offspring individuals are partitioned into
non-domination sets and the new parents are selected
using the global crowding distance metric.

Algorithm 1 shows the pseudocode of our hES implemen-
tation hES-step. The offspring individuals are generated
by Lines 1 to 4 calling the ES-generate procedure
outlined in Algorithm 2. Algorithm 1 proceeds with the
concatenation of parents and offspring individuals by calling
the add-replace procedure listed in Algorithm 3. The
add-replace procedure clones the parent population and
successively adds all offspring individuals that have a unique
Pareto vector to this population. An offspring with a Pareto
vector identical to its parent replaces the parent.

The hES-step algorithm then partitions the concatenated
set Rt into non-dominated sets Fi using the NSGAII method
fast-non-dominated-sort in Line 6. After that, start-
ing with the dominant set F1, the algorithm partitions the
set by the parents into G = {G1, G2, . . . }. That means,
Gi is defined as F1 ∩ S where S ⊆ Pt ∪ Qt contains a
parent p and its offspring individuals and p is parent of Gi.
Should a non-empty set Gi not contain the parent p, one
of the least crowded points of Gi is selected to proceed to
the next generation. Otherwise, the parent proceeds to the
next generation. All other elements of S are discarded by
hES-step.

V. BENCHMARKS

We experiment with several benchmarks to compare hES
and the periodized variants of hES, NSGAII and SPEA2.
First, we use the standard benchmarks for multi-objective
algorithms DTLZ{2,6} and ZDT6. These benchmarks are
available with the PISA toolbox [25] and are described
in [9] [10]. Second, we compare our algorithms on the evolu-
tion of digital circuits, i.e., 2×2 adders and multipliers, using
Cartesian Genetic Programming (CGP) [3] as the hardware
representation model. Figure 1 illustrates the CGP phenotype.
Besides the functional quality of the digital circuit, which in
this case is set as a constraint, we select the circuit’s area and
speed to define a multi-objective benchmark [26].

In our experiments we execute 20 repetitions for every
combination of benchmark and algorithm. The population
size is set to 50 for the parent and offspring populations
and to 100 for the archive. For the hES algorithm, the
offspring population amounts to 32 individuals for the CGP
benchmark. For the other benchmarks hES is configured to
have one offspring per parent.

Table I presents the configuration of the benchmarks
DTLZ{2,6} and ZDT6. For these benchmarks, NSGAII
and SPEA2 employ the SBX crossover operator [27]. The

Algorithm 1: hES-step(λ,Pt) - perform a single
hES step

Input: λ, archive Pt
Output: new archive Pt+1

1 Qt ← ∅
2 foreach p ∈ Pt do
3 Qt ← Qt ∪ ES-generate(p, λ)
4 end
5 Rt ← add-replace(Pt, Qt)
6 F ← fast-non-dominated-sort(Rt)
7 Pt+1 ← ∅
8 foreach Fi ∈ F do
9 crowding-distance-assignment(Fi)

10 G ← group-set-by-parent(Fi)
11 foreach Gj ∈ G do
12 if parent of Gj not already replaced then
13 if parent(Gj) ∈ Gj then
14 Pt+1 ← Pt+1 ∪ {parent(Gj)}
15 else
16 sort(Gj ,≺n)
17 Pt+1 ← Pt+1 ∪ {Gj [0]}
18 end
19 mark parent of Gj as replaced
20 end
21 end
22 end

Algorithm 2: ES-generate(p,λ) - generate λ
offspring individuals

Input: parent p, number of offspring individuals λ
Output: offspring set Q

1 Q← ∅
2 for i← 1 to λ do
3 p′ ← mutate(p)
4 Q← Q ∪ {p′}
5 end
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Fig. 1: Cartesian Genetic Programming (CGP) encodes a
two dimensional grid of functional units connected by feed
forward wires, thus forming a directed acyclic graph. The
CGP model is parametrized with the number of primary
inputs ni and outputs no, number of rows nr and columns nc,
number of functional block inputs nn, the maximal length
of a wire l and the functional set F that can be computed
by the nodes.



Algorithm 3: add-replace(P ,Q) - return copy
of P joined by Q, replace parents in P by offspring
individuals in Q with equal Pareto vectors, avoid
adding multiple offspring individuals with equal
Pareto-vectors.

Input: sets P , Q
Output: set R

1 R← P
2 foreach q ∈ Q do
3 if @r ∈ R : r � q ∧ q � r then
4 R← R ∪ {q}
5 end
6 if ∃r ∈ R :

r � q ∧ q � r ∧ parent({q}) == r then
7 R← R ∪ {q}
8 R← R\{r}
9 end

10 end

optimization runs are stopped after 10.000 fitness evalua-
tions.

Table II shows the configuration of the CGP representation
model for the 2 × 2 adder and multiplier benchmarks. We
limit the functional set to the Boolean functions presented in
Table III. The number of primary inputs and outputs are set
to three and four for the adder and multiplier benchmarks,
respectively. The evolution is stopped after 400.000 fitness
evaluations for the adder benchmark, and after 1.600.000
fitness evaluations for the more complex multiplier bench-
mark.

TABLE I: DTLZ2, DTLZ6, KUR and ZDT6 benchmark
configuration

dimension 2
number of decision variables 100
individual mutation probability 1.0
individual recombination probability 1.0
variable mutation probability 1.0
variable swap probability 0.5
variable recombination probability 1.0
eta mutation 20
eta recombination 15
use symmetric recombination 1.0

TABLE II: CGP representation model configuration

dimension 3
mutation probability 0.1
crossover probability 0.5
nr 1
nc 200
l 200
nn 2

VI. PERFORMANCE ASSESSMENT

To analyze the performance of the proposed multi-objective
optimizers, we need to compare the calculated Pareto sets. In

TABLE III: CGP configuration: functions in F [3]

Number Function Number Function
0 0 10 a⊕ b

1 1 11 a⊕ b
2 a 12 a+ b

3 b 13 a+ b
4 a 14 a+ b

5 b 15 a+ b
6 a · b 16 a · c+ b · c
7 a · b 17 a · c+ b · c
8 a · b 18 a · c+ b · c
9 a · b 19 a · c+ b · c

this paper we employ two methods: the ranking of Pareto sets
by a quality indicator and the analysis of the mean Pareto set,
attained during multiple runs. Both methods are described by
Knowles et al. [28] and are also implemented in the PISA
toolbox by Bleuler et al. [25].

A. Quality Indicators

To compare Pareto sets calculated by benchmarked algo-
rithms, Zitzler et al. [11] introduced the concept of a Quality
Indicator (QI) as a function mapping a set of Pareto sets to
a set of real numbers. Under QI, the Pareto sets define a
relation on the Pareto set quality. In our work, we use the
unary additive epsilon indicator I1ε+. It is based on the binary
additive epsilon indicator Iε+ which is defined for two Pareto
sets A and B as:

Iε+(A,B) = inf
ε∈R
{∀b ∈ B ∃a ∈ A : a �ε+ b}.

Here, the relation �ε+ is defined as a �ε+ b ⇔ ∀i : ai ≤
ε+b. For a reference Pareto set R, the unary additive epsilon
indicator I1ε+ can be now derived as

I1ε+(A) = Iε+(A,R).

Following Knowles et al. [28], we use the non-parametric
Kruskal-Wallis test [29] to statistically evaluate sequences
of quality numbers. The Kruskal-Wallis test differentiates
between the null hypothesis H0 =”The distribution functions
of the sequences are identical” and the alternative hypothesis
HA =”At least one sequence tends to yield better observa-
tions than another sequence”. In case the test rejects H0, we
provide for all sequence pairs the one-tailed p-value. Table IV
presents an example: for an algorithm tuple (Arow, Acol) a
p-value equal or below α indicates a lower mean for Arow.
Thus, one can conclude for Table IV that A1 outperforms
A2 and A3, and A3 outperforms A2. In our experiments, we
configure the significance level α to 0.01.

B. Empirical Attainment Functions

An additional way of interpreting the results of multi-
objective optimizers is to look at the Pareto points that are
covered, i.e., weakly dominated, with a certain probability
during the multiple repetitions of an optimization algorithm.



TABLE IV: Interpretation of the Kruskal-Wallis test: Given
the Kruskal-Wallis test rejects H0, a dot denotes a p-value
higher than α.

A1 A2 A3

A1 - 0.002 0.007
A2 · - ·
A3 · 0.003 -

All Pareto points that have been reached in x% of the runs
are referred to as the x%-attainment. The attainment allows
for a direct graphical interpretation as shown in the examples
of Figures 2a, 2b and 3.

In order to statistically compare the attainments we use the
two-tailed Kolmogorov-Smirnov test [30]. It distinguishes
between H0=”Sequences A and B follow the same dis-
tribution” and HA=”Sequences A and B follow different
distributions”. Table V contains exemplary results for the
Kolmogorov-Smirnov test. It can be interpreted as: A1 dif-
fers significantly from A2 and A3. In our experiments, we
configure the significance level α to 0.05.

TABLE V: Interpretation of the Kolmogorov-Smirnov test:
A dot denotes an accepted H0 hypothesis at the given α.

A1 A2 A3

A1 - * *
A2 * - ·
A3 * · -

VII. RESULTS

In this section, we first compare the performance of NS-
GAII, SPEA2, hES and periodized hES with NSGAII on
the DTLZ{2,6}, ZDT6 and 2 × 2 adder and multiplier
benchmarks. Then, we investigate our periodization scheme
more thoroughly on the ZDT6 benchmark. For the sake of a
more compact experiment description, we use the following
abbreviations:

NSGAII → n
SPEA2 → s
hES → h

A. Performance and Effect of hES

To examine the effect of local search, we first execute the
standard NSGAII and SPEA2 for a given benchmark in order
to determine the reference performance. Then, we increase
the influence of local search step-by-step by periodizing
NSGAII with hES until only hES is executed. In terms of
our periodization model, we investigate the six periodization
schemes: (n), (s), (nh), (nh4), (nh10) and (h). The results are
as follows:

1) DTLZ{2,6}: Table VI shows the results of the Kruskal-
Wallis test applied to DTLZ2 and DTLZ6 with respect to the
unary additive epsilon indicator I1ε+ at the significance level

α of 1%. For both benchmarks, NSGAII and SPEA2 signifi-
cantly dominate the algorithm combinations of NSGAII and
hES. While performing similar on DTLZ2, SPEA2 is better
than NSGAII on DTLZ6.

The central observation in this experiment is that the qual-
ity of the Pareto set degrades with increasing influence
of local search. Starting with the alternation of NSGAII
and hES, the Kruskal-Wallis test shows falling performance
when increasing the number of iterations of hES. The hES-
only experiment results in the worst performance over all
algorithms. The Kruskal-Wallis test results are confirmed by
the graphical interpretation of the 75% attained Pareto sets in
Figure 2. The Kolmogorov-Smirnov test reveals a significant
difference between all attained Pareto sets at the significance
level α of 5%.

2) ZDT6: Table VII presents the results of the Kruskal-
Wallis test applied to the ZDT6 benchmark with respect to
the unary additive epsilon indicator I1ε+ at the significance
level α of 1%. The table shows that nh4 performs signifi-
cantly better on ZDT6 than all other algorithms. Furthermore,
nh outperforms all other algorithm combinations except
nh4.

Figure 3 shows the 75%-attainment of the ZDT6 benchmark
and confirms the results of the Kruskal-Wallis test. The
Kolmogorov-Smirnov test at α = 5% reveals that NSGAII
and SPEA2 are no different, but all other algorithms show
significant deviations.
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Fig. 3: 75%-attainment for the ZDT6 benchmark

3) 2 × 2 adder and multiplier: In contrast to the previous
benchmarks, the adder and multiplier benchmarks have an
additional optimization dimension: the functional quality of a
circuit. In our work we typically focus on hardware functions
with continuous fitness measurements such as, for example,
classification accuracy [31] and cache performance [4]. In
this paper, we use arithmetic functions with binary fitness
measurements as they are commonly employed benchmarks
for the comparison of evolutionary algorithms within the
CGP context. We treat the circuit’s functional quality as
an ordinary objective function but are interested in evolving
correct circuits with various combinations of area and speed.



TABLE VI: Kruskal-Wallis test applied to the DTLZ2 and DTLZ6 benchmarks using the unary additive epsilon indicator
I1ε+ at the significance level α of 1%.

DTLZ2 DTLZ6
n s h nh nh4 nh10 n s h nh nh4 nh10

n - · 5.510
−61 1.410

−20 7.910
−37 1.810

−50 - · 9.610
−57 1.210

−13 3.110
−33 1.110

−42

s · - 1.610
−60 8.210

−20 3.710
−36 6.310

−50 9.410
−08 - 2.810

−64 1.810
−26 4.910

−44 3.810
−52

h · · - · · · · · - · · ·
nh · · 2.610

−43 - 1.210
−11 5.410

−29 · · 3.110
−43 - 1.910

−14 1.310
−25

nh4 · · 2.410
−28 · - 5.510

−12 · · 1.810
−25 · - 2.310

−06

nh10 · · 5.210
−11 · · - · · 2.510

−14 · · -
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Fig. 2: 75%-attainment for the DTLZ2 (a) and DTLZ6 (b) benchmarks

TABLE VII: Kruskal-Wallis test applied to the ZDT6 benchmark using the unary additive epsilon indicator I1ε+ and a
significance level α of 1%.

n s h nh nh4 nh10

n - · 1.910
−10 · · ·

s · - 2.610
−12 · · ·

h · · - · · ·
nh 1.810

−04 2.710
−03 7.610

−19 - · 1.910
−05

nh4 3.610
−10 2.110

−08 6.810
−26 1.410

−03 - 1.710
−11

nh10 · · 3.710
−09 · · -

Table IX summarizes the number of runs that resulted in
functionally correct solutions. The main observation, which
was the motivation for this work in the first place, is that
local search is indeed beneficial for the CGP domain and
the evolution of digital circuits. With more frequent use of
hES more correct circuits are being evolved. This insight is
also partly confirmed by the Kruskal-Wallis test for the 2×2
multiplier presented in Table VIII. There, the reference multi-
objective optimizer SPEA2 manages to outperform only the
NSGAII and the hES periodization.

For the 2×2 adder, the Kruskal-Wallis test reveals no signif-
icant differences between the algorithms at α = 1%.

B. Periodization of ZDT6

For a more detailed analysis of periodized local and global
search algorithms, we fixate on the ZDT6 benchmark and

TABLE VIII: Kruskal-Wallis test applied to the 2 × 2 mul-
tiplier benchmark using the unary additive epsilon indicator
I1ε+ and a significance level α of 1%.

n s h nh nh4 nh10

n - · · · · ·
s 1.210

−10 - 7.210
−05 · · ·

h 1.610
−03 · - · · ·

nh 7.810
−09 · 1.310

−03 - · ·
nh4 1.010

−06 · · · - ·
nh10 2.510

−07 · · · · -

apply 2- and 3-tuple permutations of the NSGAII, SPEA2
and hES algorithms on it. All experiments are repeated for
100 times and the execution is stopped after 200 genera-
tions.

Table X shows the result for 2-tuple combinations of



TABLE IX: The number of circuits with perfect functional
quality evolved by the various algorithms for the 2 × 2
adder benchmark within 400.000 fitness evaluations and 2×2
multiplier within 1.600.000 fitness evaluations.

2× 2 add 2× 2 mul
n 1 0
s 6 7
h 12 15
nh 7 8
nh4 9 11
nh10 11 14

NSGAII, SPEA2 and hES. The general statement of the
Kruskal-Wallis test is that hES periodized with either NS-
GAII or SPEA2 outperforms standard NSGAII, SPEA2 and
combinations of them. Interestingly, the hES-after-SPEA2
outperforms the hES-after-NSGAII, while SPEA2-after-hES
does not. This shows that the performance of this particular
periodization scheme is sensitive to the initial order of the
executed algorithms.

The Kolmogorov-Smirnov test confirms the results observed
before. There are basically two classes of algorithms showing
significantly different results, namely the class of algorithms
periodized with hES, and the class of NSGAII, SPEA2 and
combinations of them. In contrast to the previous test, the
differences between (hs) and (nh) are now identified as
significant.

Next, Table XI shows the results of 3-tuple combinations
of hES with NSGAII and SPEA2. Analogous to the results
achieved for the 2-tuple tests, all periodized algorithms
outperform and differ from NSGAII and SPEA2 under the
Kruskal-Wallis and the Kolmogorov-Smirnov tests, respec-
tively.

VIII. CONCLUSION

In this paper, we investigated the periodization of multi-
objective local and global search algorithms. We defined a
periodized execution model and introduced the novel hybrid
Evolutionary Strategy as a local search technique tailored
to periodization with Pareto-based genetic multi-objective
optimizers such as NSGAII and SPEA2.

The results show that for the DTLZ{2,6} benchmarks, the
new algorithm and its periodization with NSGAII underper-
forms. For ZDT6 and, most importantly, for the evolution
of digital circuit benchmarks on the CGP model, the new
algorithm and its periodizations are significantly better than
the reference algorithms NSGAII and SPEA2. Furthermore,
the periodized execution model proved to be a simple, fast
and flexible approach to combine multiple optimization algo-
rithms for merging functional and behavior properties. Thus,
blending multi- and single-objective optimizers, local and
global search algorithms and differently converging methods
creates a new family of optimization algorithms.
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