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Abstract. Since its introduction two decades ago, the way researchers
parameterized and optimized Cartesian Genetic Programming (CGP)
remained almost unchanged. In this work we investigate non-standard
parameterizations and optimization algorithms for CGP. We show that
the conventional way of using CGP, i.e. configuring it as a single line
optimized by an (1+4) Evolutionary Strategies-style search scheme, is a
very good choice but that rectangular CGP geometries and more elab-
orate metaheuristics, such as Simulated Annealing, can lead to faster
convergence rates.

1 Introduction

Almost two decades ago Miller, Thompson, Kalganova, and Fogarty presented
first publications on CGP—an encoding model inspired by the two-dimensional
array of functional nodes connected by feed-forward wires of an Field Pro-
grammable Gate Array (FPGA) device [6, 1]. CGP has multiple pivotal advan-
tages:

– CGP comprises an inherent mechanism for the design of simple hierarchical
functions. While in many optimization systems such a mechanism has to be
implemented explicitly, in CGP multiple feed-forwards wires may originate
from the same output of a functional node. This property can be very useful
for the evolution of goal functions that may benefit from repetitive inner
structures.

– The maximal size of encoded solutions is bound, saving CGP to some extent
from “bloat” that is characteristic to Genetic Programming (GP).

– CGP offers an implicit way of propagating redundant information through-
out the generations. This mechanism can be used as a source of randomness
and a memory for evolutionary artifacts. Propagation and reuse of redundant
information has been show beneficial for the convergence of CGP.

– CGP encodes a directed acyclic graph. This allows to evolve topologies. An
example is the evolution of Artificial Neural Networks (ANNs) using CGP [7].

– CGP is simple. The implementation complexity in many programming lan-
guages is marginal relying on no special programming language properties
like the ability to handle tree structures efficiently.



Along with the mentioned advantages, CGP suffers as a combinatorial represen-
tation model from the usual sources of epistasis. For instance, rewiring a single
input of a functional node can change the overall transfer function dramatically.
Additionally, the spatial arrangement of functional nodes on a two-dimensional
grid introduces restrictions to the topology of the evolved solutions. Moving a
functional node among the grid requires rearranging the genotype, if possible.
Additionally, the connection set of an input of a node strongly depends on the
location of the node on the grid. These dependencies implicitly impact on the
evolvability and make it difficult to realize structural methods for CGP. For in-
stance, a recombination operator needs to restructure large parts of a genotype to
be able to swap functionally related substructures among candidate solutions [8,
2]. A trial to free CGP from grid-induced epistasis was made in [3] by assigning
each input and output of a node signatures. Best-fitting signatures were then
used to clamp wires.

The first systematic investigation on an efficient optimization scheme for
CGP was done by Miller 1999 in [5]. Miller employed a regular GA with a
uniform recombination operator and a (1 + λ) mutation-only search scheme. He
configured CGP as a square grid of functional nodes with the maximal length of
feed-forward wires of two. In 1999 it was already know that a “neutral selection”
scheme that is preferring offspring individuals for propagating into the next
generation if they are on par or better than the parent individual is highly
beneficial for CGP. In a series of experiments Miller observed that the evolution
of digital circuits using CGP can be solved better by local search-like approaches
employing “neutral selection” than by GA.

In this work we address the question, whether the popular choice of (1 + 4)
search scheme in combination with single-line CGP genotype can be generalized.
For this, we rely on an unbiased parameter tuning method to identify (i) well-
performing parameterizations of CGP and (ii) efficient optimization schemes.

2 Experimental Setup

The first class of benchmark functions consists of Boolean adder, multiplier, and
even parity functions. The set of 2-input Boolean functions that may be used
as functional nodes in CGP genotypes is presented in Tab. 1. An experiment is
stopped if a perfect solution has been found or the maximal number of fitness
evaluations has been exceeded.

The second set of benchmark consists of twelve symbolic regression functions
(Koza-2, -3, Nguyen-4 . . . -10, Keijzer-4, -6, Pagie-1). A training data set consists
of c uniformly sampled from an interval [a, b]. The cost function is defined as
the sum of absolute differences between functional values of the reference and
evolved function at the data points of the according training set. An experiment
is terminated if the cost function reaches a value below or equal 0.01 or the
maximal number of fitness evaluations has been exceeded.



Table 1: Functional set and arameter space explored by iRace.

Benchmarks Functional set

(i, i, 1)-add, (i, i)-mul a ∧ b, a ∧ b̄, ā ∧ b, a⊕ b, a|b
even parity a ∧ b, a ∧ b̄, ā ∧ b, a|b, a|b̄, ā|b
Koza +, −, ∗, /, sin, cos, ln(|n|), en

Keijzer +, ∗, n−1, −n ,
√
n

Optimization Algorithms

As the baseline method we select the (1+4) CGP The second and third al-
gorithms are (1 + λ) CGP and (µ + λ) CGP, where the number of offspring
individuals λ and the number of parents µ are subject to optimization. For all
CGPs schemes “neutral selection” has been realized. For optimizing Boolean
circuits we have additionally selected SA with the following colling strategy:

A←
(Tstart − Tend)(N + 1)

N
; B ← Tstart −A; Tt ←

A

t+ 1
+B.

Random sampling and random walk have also been investigated in preliminary
experiments and sorted out because of inferior results.

Automatic Parameter Tuning: To detect good parameterizations, we
are using the Iterated Race for Automatic Algorithm Configuration (iRace)
package [4]. iRace was configured to execute 2000 trials for each of the tested
algorithm-benchmark pairs.

iRace usually evolves multiple good-performing configurations for an algorithm-
benchmark pair. To verify the results of iRace, we have computed for each con-
figuration the median performance in 100 runs. We have then selected for each
algorithm-benchmark pair the best performing configuration and report it in
this paper.

3 Results

Evolution of Boolean circuits: The first observation that can be made
is that the baseline (1+4) CGP on a single-line CGP is never a clear winner
regarding the median number of fitness evaluations when evolving functionally
correct Boolean circuits (c.f. Tab. 2). Except for the smallest benchmarks, the
(2, 2, 1)-adder and the (2, 2)-multiplier, and for the 8-parity benchmark SA is
always a clear winner. For the 8-parity benchmark SA is passed by (µ+λ) CGP
only by roughly 2%. For larger benchmarks, like the (3, 3, 1)- and (4, 4, 1)-adder,
(3, 3)-multiplier, and the parity benchmarks, the best performing algorithm is
1.3 to 3 times faster than the baseline (1+4) CGP. When looking at the CE
metric, SA is the clear winner for all but the smallest and the (3, 3, 1)-adder
benchmarks. Sometimes, the best performing algorithm regarding the median



Table 2: Evaluation of CGP parameters for Boolean functions. Not optimized
parameters are marked with an “–”. The comparison prefers conventional (1+4)
CGP, as iRace budget is set to 2000 for all configurations and challengers have
more parameters to optimize. The results are measured in number of fitness eval-
uations. Best results are printed in bold. nc and nr - number of CGP columns and
rows; m - mutation rate; Tstart and Tstop - starting and stopping temperatures

for SA. CE at z = 99%.
goal algo- evolved parameters termination[no. evaluations] Comp. restart

function rithm nc nr µ λ m[%] Tstart Tstop 1Q median 3Q Effort at eval.

(2,2,1) add 1+4 CGP 200 – – – 2.1112 – – 14916 26532 49840 160753 91840
1+λ CGP 100 200 – 3 0.3215 – – 11316 18933 28797 89280 34350
µ+λ CGP 200 50 1 1 0.3803 – – 8114 13129 21723 67860 19849
SA 200 2 – – 1.8976 1299 0.0348 12242 20052 35411 109530 42284

(3,3,1) add 1+4 CGP 200 – – – 2.1512 – – 113168 194120 326156 689115 689112
1+λ CGP 150 1 – 3 1.9464 – – 105789 178344 302211 929794 581961
µ+λ CGP 100 4 1 3 0.8396 – – 122460 190539 330936 1018919 451407
SA 70 4 – – 1.3706 4671 0.4366 88335 149817 246126 750368 621896

(4,4,1) add 1+4 CGP 200 – – – 1.2341 – – 424924 697152 1182452 2830424 2404400
1+λ CGP 300 2 – 2 0.6852 – – 303080 501550 698950 2206982 1680482
µ+λ CGP 100 4 1 1 1.1503 – – 364545 545438 936699 2469195 2097544
SA 150 3 – – 0.6693 3610 0.6437 283038 400832 723341 2034761 1422236

(2,2) mul 1+4 CGP 100 – – – 2.9542 – – 3452 5564 9136 28434 14864
1+λ CGP 100 100 – 3 0.8680 – – 2121 3417 5474 16512 9009
µ+λ CGP 100 30 1 1 1.4332 – – 2079 3322 5465 17349 7279
SA 30 14 – – 2.4941 58 0.0889 2661 4183 6801 21275 9959

(3,3) mul 1+4 CGP 2000 – – – 0.5008 – – 274228 447220 722280 2103815 1787156
1+λ CGP 200 20 – 2 0.2988 – – 149824 288368 459822 1203021 1203020
µ+λ CGP 150 30 1 2 0.2971 – – 130250 224178 498888 1382722 361496
SA 200 100 – – 0.1622 3336 0.0870 84844 148145 356305 949607 169289

7-parity 1+4 CGP 300 – – – 1.2582 – – 175628 271048 427788 1347746 645976
1+λ CGP 300 8 – 2 0.7142 – – 100408 186250 262668 762572 381284
µ+λ CGP 300 2 1 2 0.9089 – – 118996 186674 291118 696589 696588
SA 150 8 – – 0.7584 1528 0.2000 87773 140463 238599 539214 458054

8-parity 1+4 CGP 2000 – – – 0.9057 – – 336420 461948 739504 2113156 1374636
1+λ CGP 200 6 – 3 1.0381 – – 310524 486894 798396 2408346 932859
µ+λ CGP 300 6 1 1 0.5578 – – 192417 323192 455204 1404562 702280
SA 300 4 – – 0.6733 417 0.3479 213877 329472 479532 1196482 1196482

9-parity 1+4 CGP 2000 – – – 0.8718 – – 628536 1011220 1718660 5380705 1487336
1+λ CGP 150 3 – 2 0.7050 – – 617418 959194 1570728 2859287 2859286
µ+λ CGP 300 3 1 1 0.8519 – – 512420 755543 1239866 3073095 1774561
SA 300 10 – – 0.3784 2209 0.2907 392406 579111 910828 2209561 1876989

number of fitness evaluations is not the winner regarding the CE. However, the
differences in medians and CE values between the winner algorithm regarding
the median and the winner algorithm regarding the CE are small to marginal.

Although we have showed for Boolean benchmarks that the conventional
way of parameterizing CGP can always be outperformed, we would like to em-
phasize the following fact: Neither the best performing algorithm regarding the
median nor the best algorithm regarding the CE metric can be in general consid-
ered dominant when it comes to the computational complexity of optimization
and with it, time. The reason for this is the inaccurate assumption that the
computational complexity of a fitness evaluation is constant among all CGP
parameterizations. For example, (µ+ λ) CGP is the best-performing algorithm
regarding the median and CE metrics for the (2, 2, 1)-adder. However, despite
worse median and CE values, (1+4) CGP operating on a single-line CGP and
SA evolve functionally correct adders in much shorter time. This is because the
genotype sizes found by iRace are much smaller for the two algorithms than
for the (µ+ λ) CGP. But even having identical CGP geometries the functional



Table 3: Evaluation of CGP parameters for symbolic regression functions. Not
optimized parameters are marked with an “–”. The comparison prefers con-
ventional 1+4 CGP, as iRace budget is set to 2000 for all configurations and
challengers have more parameters to optimize.

goal optimization optimized parameters best fitness quartiles Success
function algorithm nc nr µ λ m[%] 1Q 2Q 3Q Rate

Koza-2 1 + 4 CGP 150 – – – 5 0.0095 0.0099 0.0325 0.65
1 + λ CGP 150 3 – 128 2 0.0091 0.0098 0.0364 0.68
µ + λ CGP 150 3 18 2048 10 0.0085 0.0099 0.0140 0.65

Koza-3 1 + 4 CGP 150 – – – 7 0.0104 0.0325 0.0328 0.21
1 + λ CGP 120 10 – 16 2 0.0087 0.0099 0.0325 0.49
µ + λ CGP 80 20 14 4096 5 0.0091 0.0100 0.0327 0.53

Nguyen-4 1 + 4 CGP 120 – – – 10 0.0120 0.0324 0.0487 0.21
1 + λ CGP 40 8 – 64 15 0.0129 0.022 0.0395 0.06
µ + λ CGP 60 6 18 2048 10 0.0101 0.0283 0.0498 0.24

Nguyen-5 1 + 4 CGP 60 – – – 7 0.0090 0.0100 0.0240 0.50
1 + λ CGP 150 10 – 16 2 0.0099 0.0099 0.0229 0.50
µ + λ CGP 150 20 22 4096 1 0.0085 0.0096 0.0100 0.77

Nguyen-6 1 + 4 CGP 100 – – – 2 0.0270 0.0382 0.0392 0.17
1 + λ CGP 60 20 – 8 1 0.0091 0.0191 0.0381 0.44
µ + λ CGP 80 14 – 4096 5 0.0100 0.0381 0.0407 0.25

Nguyen-7 1 + 4 CGP 200 – – – 7 0.0157 0.0262 0.0534 0.18
1 + λ CGP 120 8 – 4096 7 0.0099 0.01866 0.0382 0.25
µ + λ CGP 150 6 2 32 2 0.0116 0.0216 0.0288 0.20

Nguyen-8 1 + 4 CGP 150 – – – 15 0.0084 0.0111 0.0415 0.53
1 + λ CGP 80 10 – 16 2 0.0072 0.0084 0.0098 0.85
µ + λ CGP 150 6 2 32 2 0.0072 0.0088 0.0095 0.98

Nguyen-9 1 + 4 CGP 150 – – – 15 0.2475 0.4184 1.2077 0.00
1 + λ CGP 200 4 – 16 7 0.2707 0.6189 1.0801 0.01
µ + λ CGP 120 20 22 4096 15 0.5325 0.7245 1.0079 0.00

Nguyen-10 1 + 4 CGP 60 – – – 20 0.5728 0.9185 1.1150 0.01
1 + λ CGP 120 10 – 4096 20 0.3718 0.5727 0.7346 0.01
µ + λ CGP 150 20 8 4096 15 0.2975 0.4020 0.5921 0.00

Keijzer-4 1 + 4 CGP 22 – – – 5 3.6828 3.6828 3.6828 0.00
1 + λ CGP 200 20 – 16 7 2.1038 2.3413 2.4953 0.00
µ + λ CGP 120 20 22 1024 10 2.0837 2.2254 2.3484 0.00

Keijzer-6 1 + 4 CGP 100 – – – 2 0.3229 0.4883 0.6438 0.00
1 + λ CGP 60 20 – 64 10 0.1538 0.2184 0.3445 0.00
µ + λ CGP 200 20 6 256 0.0516 0.1008 0.2390 0.07

Pagie-1 1 + 4 CGP 150 – – – 20 31.5965 34.0846 35.2309 0.00
1 + λ CGP 200 20 – 512 10 14.9535 21.4781 30.7461 0.00
µ + λ CGP 200 20 14 256 15 14.7931 21.3225 30.1226 0.00

evaluation complexity can vary greatly, as the number of active genes that are
processed by the fitness evaluation procedure can be different.

The second observation is that when tuning for λ or for λ and µ, small values
are identified by iRace as beneficial. With this, HC and its close derivatives seem
to work better for CGP when optimizing Boolean circuits.

In related work it was shown that the efficiency of (1+4) CGP on single-line
CGP increases with rising nc. This can be observed also in Tab. 2. However, the
efficiency of CGP can be improved using rectangular grids and slightly different
(µ+λ) CGP schemes as well as SA. This is our third observation for the evolution
of Boolean functions.

Evolution of Symbolic Regression Functions: The first observation of
Tab. 3 is that the regular (1+4) CGP can be outperformed always regarding
approximation accuracy except for the Nguyen-8 benchmark. The second obser-
vation is that (µ + λ) CGP is very successful. Except for three benchmarks it
is constantly better than all the other algorithms. For the symbolic regression
we cannot observe increased efficiency for single-line CGP when increasing nc.
However, and this is our next observation, the number of offspring individuals is
usually very large. This is similar to regular GP, where often large populations



are used. Unlike to GP, the mutation operator in CGP is working on single in-
dividuals. CGP mutation and GP recombination are operators with very similar
mechanisms and effects. It is an open question we want to investigate in future
work: Assuming the intuition of the inner principle of GP is correct, i.e. parts
of the goal solutions are randomly sampled initially and distributed among in-
dividuals of a large population, then the goal of GP is put this puzzle together
correctly; Could GP also be solved effectively by a single-individual recombina-
tion (similar to CGP’s mutation) and with smaller population sizes?

The last two findings in in Tab. 3 are: Similar to Boolean functions, rect-
angular CGP geometries are more efficient than single-line CGP and successful
mutation rates are rather high, which is in contrast to prior findings suggesting
to set the mutation rate as low as possible.

4 Conclusion and Future work

In this paper, we proposed an empirical study investigating if the regular way
CGP is parameterized and optimized in related work is good. The results are
that, indeed, the single-line CGP with an (1+4) CGP scheme is good for Boolean
benchmarks but that much better results can be achieved for Boolean and sym-
bolic regression functions when using rectangular CGP grids and differently pa-
rameterized (µ+λ) CGP schemes as well as SA. Furthermore, we could observe
that similar to GP, CGP greatly benefits from large exploration rates, i.e. large
offspring populations and high mutation rates, when evolving symbolic regres-
sion functions. This behavior is surprising and requires further investigation. It
is especially interesting, if the former results on inner CGP mechanisms, like
“neutrality”, are still valid.

Following recommendations can be drawn from our experiments.

– For simple Boolean functions (1+1) HC applied on CGP with 30 to 50 rows
and 100 to 200 columns performs best.

– For complex Boolean functions SA applied on CGP with 3 to 10 rows and 30
to 300 columns performs best. Increasing the number of rows to 100 might
help in case of heavy functions, such as the multiplication.

– For Boolean functions the best observed mutation rate interval is [0.1, 1.6]%.
– For continuous functions CGP with 3 to 20 rows and 80 to 200 columns

performs best.
– For continuous functions CGP with µ = 2 . . . 22 and λ = 2048 . . . 4096 per-

forms best. It is worth investigating λ = 8 . . . 32 in cases where large λ values
do not result in fast convergence.

– For continuous functions the mutation rate may vary from 1% to 15% with
higher mutation rates being more successful for larger genotypes.

We will extend the benchmark set in our future work to more popular func-
tions, like classification and image-processing tasks, and approach the questions
regarding similarity of inner mechanisms to GP. Additionally we will try under-
stand properly the ambivalent nature of CGP making it successful for combina-
torial and continuous benchmarks.



References

1. T. Kalganova and J. F. Miller. Evolutionary Approach to Design Multiple-valued
Combinational Circuits. In Proc. Intl. Conf. Applications of Computer Systems
(ACS), 1997.

2. P. Kaufmann and M. Platzner. Advanced techniques for the creation and propaga-
tion of modules in cartesian genetic programming. In GECCO ’08: Proceedings of
the 10th annual conference on Genetic and evolutionary computation, pages 1219–
1226, Atlanta, GA, USA, 12-16 July 2008. ACM.

3. M. Lones. Enzyme Genetic Programming. PhD thesis, University of York, 2003.
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