
Evaluation Methodology for Complex
Non-deterministic Functions: A Case Study in

Metaheuristic Optimization of Caches
Paul Kaufmann, Nam Ho, Marco Platzner

University of Paderborn
paul.kaufmann@gmail.com

Abstract—When evolving a non-deterministic function by Evo-
lutionary Algorithms, a candidate solution is usually evaluated
multiple times to estimate its characteristic behavior. This is a
valid methodology unless the evaluation is too complex and the
fitness evaluations result in unacceptably long optimization times.
This challenge can be addressed by either resorting to a simpler
surrogate performance model or, in case a surrogate model is
not precise enough, by parallelizing search, or by minimizing
the number of fitness evaluations if the impact on the quality of
search is acceptable.

The work presented in this paper is motivated by the opti-
mization of processor caches, for which performance evaluation is
highly complex and nondeterministic due to the non-deterministic
behavior of today’s operating systems. Since parallelizing fitness
evaluations results in unacceptably prolonged computation times,
we employ statistical methods to identify best-performing candi-
dates using as few fitness evaluations as possible. We describe
different approaches we have investigated until finally selecting
the Wilcoxon rank-sum to adaptively control a fitness evaluation
scheme. With this novel scheme we are able to reduce the
optimization times by a factor of 3.6 without significant drop
in convergence behavior.

I. INTRODUCTION

Whenever the size and complexity of a design challenge
becomes too large to be solved directly, Evolutionary Algo-
rithms (EAs) offer a viable alternative. Relying on a formal
encoding and a set of quality metrics, EAs can solve bigger
tasks, although without usually providing any guarantees on
the solution quality and the computational time. The evaluation
of a quality metric, or fitness evaluation, is usually the most
computationally complex task of an EA. In case the behavior
of a candidate solution is subject to randomized fluctuations,
the fitness evaluation procedure becomes even more complex,
as the average behavior has to be estimated in multiple exper-
iments. To reduce the computational complexity of a fitness
evaluation, surrogate fitness models are a good choice for design
challenges with continuous parameters [1]. Using parametric
(e.g. polynomial regression) and non-parametric models (e.g.
neural networks), a surrogate fitness landscape can be learned
by sampling the original solution space multiple times. After
validating the accuracy of the surrogate model, the optimization
algorithm can proceed using the computationally inexpensive
model. Combinatorial goal functions are more difficult to
capture by a surrogate function. Parallelization is therefore

a more common approach to minimize the computational time
of a fitness evaluation [2].

The motivation of our work on complexity reduction for
accurate evaluation of non-deterministic functions is the
optimization of processor caches. We use EAs to find Boolean
circuits that are mapping memory addresses to cache indexes
such that the number of cache misses is minimized. As modern
operation systems randomize the dynamic and virtual memory
management systems, accurate performance estimation requires
multiple runs of an application. Parallelization has not reduced
computation times sufficiently.

We have therefore developed a novel adaptive evaluation
scheme monitoring the performances of a sequence of applica-
tion executions and using the Wilcoxon test for stopping the
application executions as soon as a statistically sound decision
is possible, i.e. difference of mean ranks of two populations
can be observed. With this “early-stop” strategy we are able to
reduce the computation times by a factor of 3.6 while achieving
similar convergence behaviors.

The paper continues with a section on related approaches
for optimization of caches. In the third section we present
our approach to cache optimization and show the developed
architecture. Section four introduces the setup of the opti-
mization procedure and Section five describes the sources
of non-determinism in modern processor systems. Section
six presents different methods we have tried to reduce the
number of program executions to estimate a pairwise ranking
of candidate solutions and shows also our final methodology.
Then, Section seven summarizes the results and concludes the
paper.

II. RELATED WORK ON OPTIMIZATION OF CACHES

Cache optimization can roughly be split into structural and
behavior approaches. The goal of structural optimization is to
find a good configuration for the underlying cache architecture,
e.g. the number of cache blocks, associativity, cache size,
and other parameters. When done at design time, structural
cache optimization is very well investigated and has a long
research history [3]. Reconfigurable hardware technologies
allowed shifting structural cache optimization into run-time.
One of the first efforts was conducted by Albonesi [4]. The
author allowed turning off certain cache ways at run-time in
order to save energy while achieving comparable miss rates.

mailto:paul.kaufmann@gmail.com

As an extension to this, caches with run-time configurable
associativity, replacement policy, and block sizes have been
proposed and dynamically tuned for energy in [5] and [6]. A
technique for partitioning the Last Level Cache (LLC) has been
shown very efficient in [7] and became standard for server
processors [8].

Behavioral cache optimization covers the optimization of
non-architectural properties of a cache, such as replacement
policy and the memory-to-cache address mapping function.
Cache block replacement policy remained an acute research
area for decades. In contrast, optimization of memory-to-cache
address functions has been introduced to Translation Lookaside
Buffers (TLBs) of mainframe processors [3] and is since then
subject to recurrent research efforts. Before introducing related
work on optimization of cache mappings we shortly describe
the address translation of a conventional cache.

A. Conventional Memory-to-Cache Address Mapping

A conventional cache structure has a data array memory
where each of the 2m addressable cache lines/blocks contains
2k words. A modulo-based indexing scheme partitions a
memory address a = (an−1, . . . , a0) into the tag, set index, and
block offset as can be seen at the top of Fig. 1. With this, the
modulo mapping function is computed as c = [am+k−1...ak],
picking up m bits of the index segment, and the tag is computed
as t = [an−1...am+k]. The modulo mapping function is being
used in contemporary cache structures due to its hardware
design simplicity and good performance for sequences of
consecutive addresses.

tag array +
way-selection logic

𝑎𝑚+𝑘 −1…𝑎𝑘

t

𝑎𝑛−1…𝑎𝑚+𝑘

c

tag index

tag array +
way-selection logic

blk. offset

k bits

C’

a:

t’
ft
fc

Fig. 1: Simplified cache organizations with
modulo/non-modulo indexing schemes.

B. Non-modulo Cache Mapping Functions

A cache working with non-modulo-based mapping functions
is shown as a simplified scheme at the bottom of Fig. 1. Here,
the functions f c, f t are forming additional hardware circuits
taking the address a = [an−1...ak] without the block offset
bits and computing index and tag bits c′ and t′. Optimizing f c

is an alternative way to improve the performances of caches.
In related work, closest to the conventional cache mapping

is the permutation-based mapping where f c is constructed by
permuting bits belonging to the index segment of the address
a. This approach has been demonstrated in [9], [10]. Similar
work has been presented in [11], but with bits selected also
from the tag segment of a at run-time. Inspired by the XOR-
based TLB hash functions, Vandierendonck et al. introduced a

layer of XOR gates for computing the cache index bits and
presented a heuristic to find the optimal XOR wiring for some
applications [12].

More complex cache address translation functions have been
investigated in [2] and [13]. There, the authors have used
reconfigurable fabrics of LUTs to compute Boolean circuits
of certain size. LUTs’ configurations have been evolved by
an Evolutionary Algorithm (EA). Leveraging this work, we
have developed a hardware implementation of a multi-core
system running a full-fledged OS. For this, we have extended
the caches and their snooping mechanism of a Gaisler LEON3
SPARC multi-core architecture, realized universal cache and
hardware event sensors and incorporated them into the standard
Linux performance measurement infrastructure and extended
the Linux kernel to handle cache mapping reconfigurations
during task switches.

III. EVOLVABLE CACHE ARCHITECTURE

This section covers our multi-core processor implementation
able to dynamically evolve and operate reconfigurable cache
mapping functions at the first level of caches. We first detail
the hardware architecture of reconfigurable cache mappings
and their integration in a multi-core CPU architecture. Then,
we present the hardware model for the reconfigurable cache
mappings as well as the corresponding hardware realization.
Finally, we give details on the FPGA prototype.

A. Cache Organization

We focus on Physically Tagged Physically Indexed (PTPI)
caches, where the TLB is placed prior to the cache controller.
While this decision was motivated by a simpler implementation
of a coherent memory model, future work will also investigate
virtually addressed caches. As can be seen in Fig. 2, on the
core’s side the extensions to the conventional cache architecture
are the reconfiguration controller (RC) and reconfigurable
circuit blocks. The reconfigurable circuit blocks are able to
compute any Boolean function of up to a certain size on the
address bits a = [an−1...ak] and provide the outputs for index-
ing cache lines. The configuration bitstreams for the blocks are
stored in DRAM. The RC controls the reconfiguration process;
the bitstream transfer is done via DMA. The reason for having
multiple reconfigurable blocks is to mask the reconfiguration
time. The number of blocks can even be increased to reduce
the reconfiguration time in massive multi-threaded systems.
It is important to note that the tag for non-modulo mapping
functions consist of all non-block-offset bits of a = [an−1...ak],
which increases the overall size of cache memory.

B. Implementation of a Coherent Memory Model

In physically tagged caches changing the memory-to-cache
address translation requires the cache to be flushed. While
this increases compulsory misses and introduces overhead, we
restrict these effects by scheduling a task always to run on the
same core. Therefore, context switches happen infrequently.

In systems with multiple caches that use the snooping
protocol to implement a coherent memory model, each time

CORE

TLB

VA

PA Datatag v

== ==

hit

TAG ARRAY DATA ARRAY

data

way
hit

c
index

tag index blk. offset

k bitsn-k bits

Dual-
reconfigurable

block
t

t

𝑎𝑛−1 … 𝑎𝑘

RC

DMA

== ==

invalidate hit

tag index

Core’s side Coherence’s side

t

Interconnection
network

PA

n-k bits

MEM

WB

Fig. 2: Level 1 Cache with Reconfigurable Mappings

a core invalidates a cache line, all other cores have to check
whether their caches contain a cache line with the same
address and invalidate it. As the caches use different cache
indexing functions, the snooping mechanisms of each core
need to compute the mapping function currently used by the
core. Therefore, as shown on the coherence’s side of Fig. 2,
the snooping mechanisms have also reconfigurable blocks
computing the same mapping function as currently used by
the core side.

C. Incorporating Reconfigurable Cache Mappings

Similar to previous work [2], [13], we encode address
translation functions as a Cartesian Genetic Program: a two-
dimensional array of run-time reconfigurable 2-input LUTs
connected by feed-forward wires. The routing between the
combinational nodes is in our case a fixed butterfly network.
To give the optimization algorithm more freedom for routing,
the first column may connect to any of the address bits. The
reconfiguration time for a node is four clock cycles. The
RC can configure up to 32 nodes concurrently. For example,
reconfiguration for a grid of 80 nodes, organized as 16 rows
× 5 columns, takes 12 clock cycles.

D. Putting it All Together and Prototyping on an FPGA

Fig. 3 shows an overview of our prototype on a Virtex-6
FPGA. We implement the Cartesian Genetic Programming
(CGP) grid by mapping the combinational nodes of the model
to Xilinx’s SRLC32E primitives, one by one. These primitives
use native look-up tables (LUT) of the FPGA and have a similar
structure as CGP nodes described above. However, since these
primitives on a Virtex 6 FPGA have 5 inputs, we use only the
first two for implementing a CGP node [14]. We plan to use
the full width of the native Xilinx’s LUTs in future work.

The RC is implemented as an additional hardware module,
working in cooperation with a DMA interface. It includes
control registers that can be accessed by any core via a
dedicated bus interface. To this end, we have extended the

Address Space Identifier (ASI) lda/sta instructions of the
SPARC architecture in LEON3 [15].

Lastly, we have implemented a measurement infrastructure
allowing us to monitor the performance of the caches and
the according address mapping functions. The infrastructure
incorporates into the standard Linux kernel monitoring tool for
collecting microarchitectural metrics [16].

RC
L1:I

Core 1

L1:D
PMU

TLB

AMBA Bus

Ext. Bus

…
L1:I

Core 4

L1:D
PMU

TLB

Fig. 3: Implementation of reconfigurable cache mappings in a
multi-core LEON3. Gray blocks are extensions to the regular

LEON3 architecture (reconfigurable cache mappings for
Integer and Snooping Units and the Reconfiguration

Controller).

E. System Specification

Table I summarizes parameters of our prototype system
supporting reconfigurable cache mappings in a quad-core
LEON3 platform. The prototype is implemented on a ML605
board equipped with a Virtex-6 FPGA. We have implemented
reconfigurable circuits according to the CGP model for both
L1:I and L1:D caches. Using corresponding device drivers, the
system can execute Linux and reconfigure the cache mappings
at run-time.

Table II shows the hardware resource usage for one core
of the quad-core platform synthesized with 4KB, 1 − way,
8KB, 1 − way and 8KB, 2 − way memories for instruc-
tion and data caches. The RC is shared by all cores and
implemented as an independent component with FIFOs for
fetching reconfiguration data from memory via DMA. The

implementation consumes 13 Distributed RAMs (DRAMs),
where RAM32x1D primitives are used. Based on a previous
implementation [16], the Performance Monitoring Unit (PMU)
per core is extended to support up to 8 concurrently monitored
hardware events. The reconfigurable fabrics are implemented
with three dual-blocks, out of which one is dedicated for L1:I,
and two are for L1:D caches. Each of the CGP grids has 80
nodes, instantiated as 80 SRLC32Es.

TABLE I: LEON3 quad core implementing reconfigurable
cache mappings.

Generic System Configuration
Parameters Configuration

Clock Frequency 50MHz
Floating Point Software

Memory 1GB DRAM
I/D-TLB 8 entries

Linux Kernel 2.6.36.4 patch from Gaisler
Compiler Pre-built Linux

toolchain from Gaisler
PMU 8 event counters

RC Reconfiguration Controller
Cache Configuration

L1:I & 4KB:1-way, 8KB:{1,2}-way,
L1:D {16,32}-bytes/line

Coherency Snooping Protocol

TABLE II: Hardware resources used by a one-core system.
The overhead[%] compares the resources to a regular LEON3

implementation with a conventional cache.

FFs LUTs DRAMs BRAMs 2

RC 1 176 557 13 0
(RAM32x1Ds)

PMU 401 1258 0 0
CGP & 2972 1558 80 x 6 0

Controllers (SRL16Es)
Cache Controllers

4KB,1-way 969 2543 0 0
Overhead[%] 39.4% 23.8% 0.0% 0.0%

8KB,1-way 1238 3106 0 0
Overhead[%] 29.6% 14.9% 0.0% 0.0%

8KB,2-way 1246 3288 0 0
Overhead[%] 29.3% 35.5% 0.0% 0.0%

Cache Tags & Memories
4KB,1-way 46 47 0 7

Overhead[%] 21.1% 17.5% 0.0% 0.0%
8KB,1-way 48 48 0 12

Overhead[%] 23.07% 23.07% 0.0% 9.1%
8KB,2-way 92 90 0 14

Overhead[%] 21% 25% 0.0% 0.0%

IV. THE EVOLUTIONARY OPTIMIZATION PROCEDURE

The optimization procedure for cache mappings consists
of two phases. In the training phase an (1+4) Evolutionary

1Shared by all cores
2BRAMs, different data widths

Strategy is searching for good-performing cache mappings
and in the validation phase the best individual found so far is
evaluated on data not used in the training and the numbers are
reported.

The optimization procedure is sketched in Fig. 4. A candidate
solution presenting the configuration of the functional blocks
and the routing of primary inputs of the reconfigurable address
mapping blocks of LEON3 is encoded by a bitstring. When
starting the evolution, the initial population of one candidate
solution (parent) is either sampled randomly or it encodes the
conventional modulo cache mapping. After initialization, a
loop is iterated for a predefined number of cycles (generations)
creating in each iteration four offspring individuals (children)
by duplicating the parent’s bitstring and mutating it. Mutation
is defined as randomly flipping few bits. Each child is evaluated
with the mean number of misses per kilo instructions (MPKI)
for an application and a set of input data vectors. For the
evaluation procedure, the reconfigurable memory mapping
fabrics are configured by the bitstream of the candidate solution
and the target application is executed for each of its training
input vectors. Using Linux’s perf_tool the performance
numbers are monitored and reported to the ES algorithm. ES
collects the functional qualities and select the best individual as
the new parent. The old parent proceeds to the next generation
only if it is strictly better than all of its offspring individuals.

Population Mutation

Evaluation

Discard

Parent

flip bits to
produce 4
offsprings

Initialized
chromosome

either random or
from modulo

4
iterations

0111 1001 … 0001 1100

A chromosome

Selection

The best offspring

Fig. 4: Evolution of Caches: (1 + 4)-ES.

V. SOURCES OF NON-DETERMINISM AND THE EVALUATION
PROCEDURE

Realistic estimation of performance of a computing system
depends on various direct and implicit factors. Usually, the
performance is derived for an application and its input data of
certain size. Factors like the interdependence with concurrently
executed applications competing for the same resources and
the overhead by the performance measurement system are
minimized as far as possible. But even then experiments
repeated under identical conditions still may produce varying
performance numbers. In the following we present two sources
of non-determinism making it difficult to compare processors
with different cache mappings. This initiated our search for an
accurate and efficient performance evaluation scheme.

A. Randomization of Physical Page Allocation

We evolve cache mapping functions on the basis of memory
access patterns of applications. Memory access patterns change
depending on various factors. These factors have to be consid-
ered to evolve cache mappings with good general performance.
The size of the input data, as already mentioned, is the first
factor that changes data and instruction memory access patterns.
For algorithms with execution order of instructions depending
on the values of the processed data, the statistical distribution
of data values is the next impact factor. For systems with
dynamic memory management and a physical address space,
an application is usually loaded by the OS into different address
spaces, depending on the currently executed application set.
For systems with virtual address spaces the loader usually
assigns the same virtual address ranges to program segments.
However, the mapping from virtual to physical pages is usually
randomized by the OS. As our processor implementation is
using physically addressed L1 caches, almost all mentioned
factors are relevant for our situation and we observe different
memory access patterns for each re-execution of an application.
Hence, a characteristic performance of a candidate cache
mapping has to be derived in multiple experiments.

B. Deviation of Cache Mapping Functions

A memory-to-cache mapping can be seen as a special
form of a hash function. The quality of a hash function f ,
f(x ∈ Bn)→ y ∈ Bm, n > m, is usually defined as how
evenly input values x ∈ Bn are distributed among the outputs
of f(x) ∈ Bm. In contrast, cache mapping functions act on
unevenly distributed input values where also the temporal
occurrence of the values has an impact on f ’s quality. The
consequence is that for good cache performance the output
distribution of f may need to be highly irregular. As can be
anticipated, irregular hash functions tend to deviate in their
outputs for varying input sequences stronger than uniform
hashes. An example is given in Fig. 5. There we compare
the number of L1:D cache misses in 10× 106 instruction
executions of the CJPEG executable when configured to use the
conventional and an optimized cache mappings. The numbers
are reported as sample means and deviations after 5, 10, 15. . . 40
iterations. The first observation is that the modulo caching
function (white bars) is much more consistent in the number of
misses per instruction than an evolved hash function (gray bars).
The deviation becomes smaller for both mapping functions
when the number of experiments increases.

A surprising observation is that while for 5, 10. . . 35
iterations the evolved non-modulo cache mapping is consis-
tently better, for 40 experiment iterations the modulo-based
caching mapping excels. This illustrates the challenge we are
facing when comparing different cache mapping functions
while simultaneously trying to minimize the computational
complexity of the comparison.

C. Functional Quality and the Evaluation Procedure

The objective of the optimization algorithm is to reduce the
number of cache misses. We use the Miss Per Kilo Instructions

70

80

90

5 10 15 20 25 30 35 40

C
ou

nt
s

x
10

00
0

#Iterations

Non-Modulo Mapping Modulo Mapping

Fig. 5: Sample mean and deviation of L1:D’s misses
computed by looping CJPEG executions.

(MPKI) as the goal metric defined as

MPKI =
M

IC
× 100,

where M and IC are the numbers of misses and
retired instructions, respectively.

As the search for good performing cache mapping functions
has to ensure that candidate solutions excel for a wide range
of potential input vectors, we evaluate candidate solutions
on multiple input vectors. The input vectors are selected
to be as different and as representative as possible. To be
able to aggregate MPKI values for different input vectors,
we normalize the values to the performance of the modulo
cache mapping function. That is, for an application app, an
input_vector ∈ I = {i1, i2, i3, i4}, a candidate cache
mapping function candidate and the reference modulo
caching mapping function modulo, the normalized MPKI
is defined as:

MPKI1 =
MPKI(app,input_vector,candidate)

MPKI(app,input_vector,modulo)
.

DMPKI1 and IMPKI1 represent the MPKI1 metric for the
data and instruction caches of an split L1 cache, respectively.
Sequences of normalized DMPKI1 values are the basis for
mutual comparisons of candidate solutions used by the evolu-
tionary strategies. Before detailing the comparison procedure in
the next section, we would like to present the MPKI evaluation
scheme. Our LEON3 implementation includes four cores. When
profiling an application for MPKI metric, we parallelize up
to four executions while forcing the execution of a candidate
application to a dedicated core with Linux’s affinity
feature to minimize interdependencies. A restriction we made
is that the candidate application, its input vector, and the
cache mapping function have to be the same for all cores.
This restriction is, however, motivated by the simplicity of
the evaluation procedure only. In regular operation mode all
LEON3 cores may select their own hash mapping function
that also can be reconfigured during any task switch.

VI. SEARCH FOR AN EFFICIENT EVALUATION PROCEDURE
FOR NON-DETERMINISTIC OBJECTIVE FUNCTIONS

In this section we present insights taken from the evolution
of cache mappings for the CJPEG application. The same

observations are valid for other benchmarks from the MiBench
suite, like BZIP2.

A. Reference Performance

Before investigating ideas for the reduction of computational
effort for fitness evaluation of non-deterministic functions,
the baseline performance for an exemplary benchmark is
established and described in this section. We have selected the
CJPEG benchmark from the MiBench suite and evolved in
three experiments by a (1 + 4) ES executed for up to 2000
generations cache mappings for a direct mapped 4kB L1:D
cache with cache blocks of four 4-byte words. As described
in the previous section, fitness evaluation of a candidate cache
mapping was conducted for four input vectors consisting of
256 by 256 pixels images. All three experiments were started
from randomly initialized solutions. The number of iterations
an application and the according cache mapping function were
executed was set to K = 32.

Dashed lines in Figure 6 show the development of DMPKI1

evolved in three runs by (1 + 4) ES for K = 32. The thick
solid horizontal line indicates the baseline performance of the
modulo cache mapping. The first observation is that all runs
are able to evolve a cache mapping that is at least as good as
the conventional cache mapping after 2000 generations. The
second and third runs are able to reach the break-even after
roughly 250 generations minimizing the cache misses of the
L1:D cache by 20% and more than 30%, respectively. While
the results are promising, the execution time for a single run
amounted roughly for 12 days. Using three Xilinx ML605
boards we were able to finish all three runs in the mentioned
time. However, when the goal is to evolve cache mapping
functions for all applications of a benchmark suite, like SPEC
and MiBench, and especially use larger input vectors, the trend
of the observed computational complexity becomes prohibitive.

B. The Racing Procedure

To reduce K we propose an adaptive scheme executing two
algorithms for few times and using the Wilcoxon test to identify
whether the medians are significantly different. In case of a tie,
the algorithms are executed for an additional round and the
test is repeated. This procedure continues until a winner has
been found or the computational budget expires. In the latter
case the population with the better median wins.

Normally or not Normally Distributed: That is the question!

When comparing two populations whether one has a better
mean, a common method is to compute the p-value for the
distribution of the distance between sample averages. This,
however, requires that the populations follow the normal
distribution. Using the Shapiro-Wilk, Kolmogorov-Smirnov,
and Anderson-Darling tests for α = 5% we have investigated
the normality of the DMPKI1 sequences with the results,
that 47.9%, 41.1%, and 46.7% are not following the normal
distribution. This forced us to resort to non-parametric methods.

The Evaluation Procedure

Inspired by the iRace algorithm racing package [17], we
have implemented initially the Friedman’s test to decide, which
of the five candidate solutions of a generation produce a better
population of DMPKI1 numbers. As the test relies on paired
treatments, which in our case is an unnecessary restriction, we
have resorted at the end to the Wilcoxon rank-sum test. With
this, we are following the racing procedure described previously
with a maximal computational budget of K = 16 iterations.
The final evaluation scheme is sketched in Algorithm 1.

Algorithm 1: Adaptive Parallel Evaluation

Input:
– app: candidate application
– p, Fp: parent individual and its K DMPKI1 values
– C = {c1, c2 . . . }: a population of candidate solutions
– i ∈ I = {i1, i2 . . . }: input vectors
– k = 4: k-core LEON3 processor
– K = k ∗ j, j ∈ N>0: number of iterations for an input vector i
– α← 0.05: significance level for the Wilcoxon test
Output:
– (best, Fbest): best individual and according DMPKI1 values

1 F = {Fc1 , Fc2 . . . } ← ∅
2 C′ ← C

3 forall c ∈ C do
4 for l← 4, 8 . . .K do
5 forall i ∈ I do
6 for p = 1 . . . k do in parallel
7 Fc ← Fc ∪ COREp(DMPKI1(app, i, c))

8 if wilcoxon(Fc, Fp, greater) < α then
9 C′ ← C′ \ c

10 break

11 C′ ← C′ ∪ {p}
12 while ||C′|| > 1 do
13 pick a pair a, b ∈ C′

14 if wilcoxon(Fa, Fb, greater) < α then
15 C′ ← C′ \ ca
16 else if wilcoxon(Fb, Fa, greater) < α then
17 C′ ← C′ \ cb
18 else if median(a) ≥ median(b) then
19 C′ ← C′ \ ca

20 return (c ∈ C′, Fc)

The idea of the algorithm is to use the k = 4 parallel
cores of the LEON3 processor to evaluate k = 4 times an
application and its candidate cache solution c on the same input
vector i ∈ I . This is repeated for all input vectors i ∈ I and
then the Wilcoxon test is used to drop early those individuals
that are worse than the parent individual p (cf. lines 8-10 in
Algorithm 1). If after evaluating the candidate cache c four
times on all input vectors the Wilcoxon test does not indicate
that c is inferior to parent p, a next round of four evaluations
for all input vectors is started to increase the population of

0 500 1000 1500 2000

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Number of generations

D
M

PK
I 1

K=32, run 1

K=32, run 2

K=32, run 3

K=adaptive, run 1

K=adaptive, run 2

K=adaptive, run 3

conventional cache
K=32
K=adaptive

Fig. 6: Evolution of DMPKI1 (performance of best candidate solution) for the L1:D cache by (1 + 4) ES for CJPEG. All
experiments have been started from a randomly initialized candidate solution. Dashed lines present the results of three ES runs
where the number of iterations K for an input vector was fixed to 32. Solid lines present the results of three ES runs where K
was set adaptively, depending on the outcome of the Wilcoxon test comparing five individuals of a generation. The thick solid

horizontal line indicates the baseline performance of the modulo cache mapping.

DMPKI1 values of c. The Wilcoxon test is repeated again for
the larger sample population of c and if early exit is still not
possible, the whole procedure is repeated until the maximal
number of fitness evaluations K per input vector i ∈ I has
been reached.

After the first part of the algorithm (lines 1–10), all remaining
candidate solutions stored in the set C ′, and the parent
individual have been evaluated K times on each input vector.
The remaining candidate solutions are also not worse than the
parent individual regarding the Wilcoxon test. In the second part
of the algorithm (lines 11–19) all individuals of C ′ ∪ {p} that
are worse than any other individual in the same set under the
Wilcoxon test are removed (lines 14–17). For the remaining
individuals the individual with the lowest median DMPKI1

value is selected as the new parent for the next generation.

Reduction of Computational Complexity

The convergence behavior with the adaptive parallel evalua-
tion procedure is compared to the reference behavior in Fig. 6.
We have executed the adaptive scheme for 1500 generations.
The first observation is that the adaptive scheme still show a
convergent behavior and that the deviation of DMPKI1 values
is smaller that for the reference case. The quality of the results
is roughly on par with the reference evaluation procedure. In
Tab. III the distributions of number of (application, input vector)
executions in a generation for the three runs is presented. There
it can be seen that a decision, which individual is best in a
population, can be carried out in 84.83% of the cases after
generating only eight DMPKI1 values for each of the four

l|I|k 1st run 2nd run 3rd run average
Kadap
Kref

64 0.07% 0.07% 0.07% 0.07% 0.01%
128 81.28% 89.34% 83.88% 84.83% 21.21%
160 16.26% 9.19% 14.06% 13.17% 4.12%
192 2.27% 1.13% 1.93% 1.78% 0.67%
224 0.07% 0.27% 0.07% 0.13% 0.06%
256 0.07% 0.00% 0.00% 0.02% 0.01%

TABLE III: Distribution of number of (application, input
vector) executions in a generation for (1 + 4) ES. The last
column compares the average number of (application, input
vector) executions among three runs to the reference case
with K = 32 (i.e. K|I|k = 32 · 4 · 4 = 512). The overall

reduction amounts roughly to
100%− 21.21%− 4.12%− 0.67% ≈ 74%.

individuals, assuming all four new candidates stay in the race
until a final decision is done. Overall, the adaptive scheme
allows us to finish an evolutionary run in 3.5 days or 299840
seconds, which is a 3.6 times reduction of the computational
time. As in our case the overall optimization time amounts for
months, this is a significant improvement. The reduction is not
a high as 74% (cf. Tab. III) due to the constant overheads of
the performance measurement subsystem.

0 500 1000 1500

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Number of generations

D
M

PK
I 1

●
●

●

●

●

●

●

● ●

● ● ● ● ●

●

conventional cache
cjpeg
djpeg
fft
susan
sha
cadpcm
dadpcm

Fig. 7: Training convergence behaviors for some benchmarks from the MiBench suite. The experiment configurations are
identical to the configuration of the CJPEG benchmark.

VII. CONCLUSION

In this paper we have described the creation of an adaptive
parallel fitness evaluation scheme for non-deterministic goal
functions. We have shown that we can reduce the computational
times by a factor of 3.6 while achieving similar convergence
behaviors. Apart from further improving and fine tuning our
evaluation method, our main interest for future investigations is
whether combining the MPKI1 values of different input vectors
for statistical testing can be replaced by multivariate methods
identifying input vectors and input data distributions that may
profit from a dedicated hash mapping function. That is, when
the MPKI1 values for a single or a group of input vectors
for some cache mapping function constantly underperform
compared to the median performance and compared to other
cache mapping functions, a dedicated cache mapping function
for the outlier group could be beneficial.

REFERENCES

[1] Y. V. Pehlivanoglu and B. Yagiz, “Aerodynamic design prediction using
surrogate-based modeling in genetic algorithm architecture,” Aerospace
Science and Technology, vol. 23, no. 1, pp. 479 – 491, 2012.

[2] Details omitted due to double-blind reviewing.
[3] A. J. Smith, “Cache Memories,” ACM Comput. Surv., vol. 14, no. 3, pp.

473–530, 1982.
[4] D. Albonesi, “Selective cache ways: On-demand cache resource al-

location,” in Proceedings. 32nd Annual International Symposium on
Microarchitecture (Micro). IEEE, 1999, pp. 248–259.

[5] C. Zhang, F. Vahid, and R. Lysecky, “A self-tuning cache architecture for
embedded systems,” ACM Trans. Embed. Comput. Syst. (TECS), vol. 3,
no. 2, pp. 407–425, May 2004.

[6] L. Li, I. Kadayif, Y.-F. Tsai, N. Vijaykrishnan, M. Kandemir, M. Irwin,
and A. Sivasubramaniam, “Leakage energy management in cache
hierarchies,” in Proceedings on Intl. Conf. on Parallel Architectures
and Compilation Techniques (PACT). IEEE, 2002, pp. 131–140.

[7] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM
International Symposium on, 2006, pp. 423–432.

[8] Intel, “Improving Real-Time Performance by Utilizing Cache Allocation
Technology,” Intel, Tech. Rep., 2015.

[9] T. Givargis, “Improved indexing for cache miss reduction in embedded
systems,” in Proceedings Design Automation Conference (DAC). IEEE,
2003, pp. 875–880.

[10] K. Patel, E. Macii, L. Benini, and M. Poncino, “Reducing cache misses
by application-specific re-configurable indexing,” in Proceedings of the
2004 IEEE/ACM Intl. Conf. on Computer-aided Design (ICCAD). IEEE
Computer Society, 2004, pp. 125–130.

[11] A. Ros, P. Xekalakis, M. Cintra, M. E. Acacio, and J. M. Garcı́a,
“Adaptive selection of cache indexing bits for removing conflict misses,”
IEEE Trans. Computers, vol. 64, no. 6, pp. 1534–1547, 2015.

[12] H. Vandierendonck, P. Manet, and J. Legat, “Application-specific recon-
figurable xor-indexing to eliminate cache conflict misses,” in Proceedings
Design, Automation and Test in Europe (DATE). IEEE, 2006, pp. 1–6.

[13] Details omitted due to double-blind reviewing.
[14] Xilinx, “Virtex-6 libraries guide for hdl designs.” [Online].

Available: http://www.xilinx.com/support/documentation/sw manuals/
xilinx14 4/virtex6 hdl.pdf

[15] Aeroflex Gaisler, “Grlib.” [Online]. Available: http://www.gaisler.com/
products/grlib/grlib.pdf

[16] Details omitted due to double-blind reviewing.
[17] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and

T. Stützle, “The irace package: Iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43 – 58,
2016.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/virtex6_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/virtex6_hdl.pdf
http://www.gaisler.com/products/grlib/grlib.pdf
http://www.gaisler.com/products/grlib/grlib.pdf

Algorithm 2: compare
Input: p, Fp - parent candidate solution and its MPKI1 values
Input: c - off-spring candidate solution
Input: app, I0 . . . I3 - application and its input vectors
Input: n← 12 - max. repetitions: (application, input vector)

1 |Fc| ← ∅
2 for i← 1, . . . , n do
3 Fc ← Fc ∪ {MPKI1(CPU0, app, c, I0) . . .MPKI1(CPU3, app, c, I3)
4 if Wilcoxon.ranksum(Fc, “worse”, Fp, α← 0.05) then
5 return (p, Fp)

6 if median(Fp) < median(Fc) then
7 return (p, Fp)

8 return (c, Fc)

	Introduction
	Related work on Optimization of Caches
	Conventional Memory-to-Cache Address Mapping
	Non-modulo Cache Mapping Functions

	Evolvable Cache Architecture
	Cache Organization
	Implementation of a Coherent Memory Model
	Incorporating Reconfigurable Cache Mappings
	Putting it All Together and Prototyping on an FPGA
	System Specification

	The Evolutionary Optimization Procedure
	Sources of Non-determinism and the Evaluation Procedure
	Randomization of Physical Page Allocation
	Deviation of Cache Mapping Functions
	Functional Quality and the Evaluation Procedure

	Search for an Efficient Evaluation Procedure for Non-deterministic Objective Functions
	Reference Performance
	The Racing Procedure

	Conclusion
	References

