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Abstract— In this paper, we investigate the behavior of
state-of-the-art pattern matching algorithms when applied to
electromyographic data recorded during 21 days. To this
end, we compare the five classification techniques k-nearest-
neighbor, linear discriminant analysis, decision trees, artificial
neural networks and support vector machines. We provide
all classifiers with features extracted from electromyographic
signals taken from forearm muscle contractions, and try to
recognize ten different hand movements. The major result of
our investigation is that the classification accuracy of initially
trained pattern matching algorithms might degrade on sub-
sequent data indicating variations in the electromyographic
signals over time.

I. INTRODUCTION

Modern prosthetic hand controllers allow the operation
of complex and multi-functional prostheses in a simple
and intuitive way by deriving an amputees’ intention from
muscular activity using pattern matching algorithms. A large
part of related work on electromyography (EMG) signal clas-
sification focuses on accuracy improvement and the number
of discriminated movements. In our work we concentrate on
the effects of EMG signals when recorded over a longer
period of time. In this context, the main question is whether
and how much the classification accuracy degrades over time
if the pattern matching algorithms are not being trained re-
currently? Assuming a change in the EMG signals, essential
issues to study are the nature of the change, the way it can
be measured, the effects on the classification accuracy, the
appropriate feature extraction schemes compensating EMG
signal variations and the effects of the amputee interacting
with the prosthesis control. Furthermore, one also has to
analyze technical issues such as the amount of training data
for reaching nearly asymptotic accuracy, the selection of
most stable feature extraction / dimensionality reduction /
classification algorithm combination and incremental learn-
ing.

In experiments presented in this paper, we investigate
the basic question of accuracy deterioration in the case
that the pattern matching algorithms are not being retrained
periodically. To this end, we collect a data set of 10 hand
movements performed by a non-amputee on 21 days and
roughly five to six times a day (altogether 121 trials).
We classify these data afterwards with five state-of-the-
art algorithms: Decision Trees (DT), k-th Nearest Neighbor
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(kNN), Multi-layer Perceptrons (MLP), Linear Discriminant
Analysis (LDA) and Support Vector Machines (SVM). We
evaluate the algorithms when trained on initial trials, when
trained on only the most recent data, and when using all
preceding data.

The paper is structured as follows. Section II reviews
related work. The setup of the EMG sensor system and
the conducted experiments, as well as the signal processing
and feature extraction are presented in Section III. The
experiments are evaluated using three different schemes in
Section IV. Finally, Section V concludes the paper and gives
an outlook on future work.

II. RELATED WORK

Early attempts using pattern matching algorithms for pros-
thesis control have been proposed by Finely [1], Herberts [2]
and Graupe and Cline [3]. In today’s literature on EMG clas-
sification the signal processing chain is often broken down
to three algorithmic components: the feature extraction, the
dimensionality reduction and the pattern classification. In
the feature extraction step attributes are extracted omitting
redundancy. In the second step the amount of data is further
reduced by selecting or projecting features for more robust
and accurate classification. In the last step pattern matching
algorithms are applied to detect the category of the input
data. The complete processing queue has to be carefully
balanced - especially the combination of the pattern matching
algorithm and the selected feature contributes significantly to
the classification accuracy.

For continuous prostheses control the feature extraction
schemes act in a sliding-window manner. That is, a single
feature set is calculated on data recorded during typically up
to 300 milliseconds. Then, according to the classification rate
of the prostheses controller, the next data window is selected
and the feature extraction step is repeated.

Computationally efficient algorithms are of utmost im-
portance as prosthesis control is typically implemented on
low-performance embedded systems. Here, feature extraction
methods acting in the time domain (TD) are well suited due
to their simplicity. Mean absolute value (MAV), zero crossing
(ZC), slope sign changes (SSC) and waveform length (WL)
are often used by EMG classification algorithms [4]–[6].

EMG electrodes, being electrically only loosely coupled
to the skin surface, are basically antennas collecting a lot of
noise from power lines, adjacent electric and electronic pros-
thesis subsystems and other electromagnetic sources. Besides
this noise, varying skin conductance affects amplitude based
TD features. Thus, a significant part of approaches presented
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Fig. 1: Sensor placement (muscle anatomy taken from [24]).

in related work concentrate on frequency domain (FD) based
feature extraction or on combinations of TD and FD to
suppress noisy influences. Fourier transformation (FT), short-
time FT (STFT), wavelet transformation (WT) and wavelet
packet transformation (WPT) are among the popular meth-
ods [7]–[9]. However, FD based feature extraction schemes
are computationally expensive and suited for today’s high-
performance embedded systems.

The second step in the EMG signal processing chain is
the dimensionality reduction of features. Reducing feature
dimensionality while preserving essential information may
increase the generalization ability. Additionally, irrelevant
information skipped in this step reduces the amount of pro-
cessed data. Dimensionality reduction can be implemented as
the selection of a subset of features that maximizes the proba-
bility of an accurate classifier decision [7], [10]. However, for
the classification of EMG signals the projection of features
gained more popularity. Here, a new and generally smaller
feature set is derived by linear or non-linear combinations of
the features in the original feature set. Principle component
analysis (PCA) [7], [10], linear and non-linear discriminant
analysis (LDA, NLDA) [11], and self-organizing feature
maps (SOFM) [11] are some of the employed algorithms.

In the last step of the signal processing chain the pat-
tern matching algorithms are executed. A dominant part
of related work uses artificial neuronal network (ANN)
based classifiers [4], [12]–[14]. Newer work also introduces
support vector machines (SVM) for EMG signal classifi-
cation [15]–[17]. Bayesian classifiers [7], [18], [19], fuzzy
classifiers [20], [21], Gaussian mixtures [22], and hidden
Markov models [23] have also been applied.

y a classification algorithm. No dimensionality reduction
is applied on feature vectors.

III. EMG SENSOR SYSTEM AND EXPERIMENT SETUP

We use a portable data acquisition system [25] to con-
tinuously monitor four EMG sensor channels with 24 bit
resolution at a sampling rate of 2048 Hz. We place the four
electrode pairs on the top, bottom, medial, and lateral sides
of the forearm with the reference at the wrist (see Fig. 1).
The exact electrode positions are determined specifically for
the test subject to obtain pronounced signals. After initial
calibration we mark the electrode positions to be able to re-
establish the experimental setup on different days.

In a single data experiment run, the test subject has to
perform a sequence of multiple and different movements.
The movements are depicted in Fig. 2. The recording of
a movement starts with a four second relaxation phase
followed by a five second contraction phase. The EMG
signal for the contraction part divides roughly into a one
second phase at the onset of the contraction containing the
transient components of the EMG signal, and a subsequent
steady state phase which corresponds to a constant force
contraction phase. We use the data of the steady phase for
our classification experiments.

Signal preprocessing and feature extraction is done com-
pletely in the digital domain. EMG data from roughly 150
milliseconds is used to calculate the mean absolute value
(MAV), zero crossings (ZC), slope sign changes (SSC) and
the waveform length (WL) [18]. After finishing the extraction
the data window is shifted by roughly 150 milliseconds and
the next feature vector is calculated. A compact description
of the employed features is given by Zecca et al. [5].

IV. EXPERIMENTS AND RESULTS

The EMG data collected during 21 days (altogether 121
trials) is evaluated in three experiments. For a test trial i,
2 ≤ i ≤ 121, we define the indices of the training set trials
as:

I. 1, . . . , i− 1,
II. 1, . . . ,min(s, i− 1), and

III. max(i− s, 1), . . . , i− 1.
s denotes the number of trials that are sufficient to gain high
test accuracies for all algorithms. In preliminary experiments
we observed for all considered algorithms that data of
roughly five trials, which corresponds to the data recorded
during one day, is sufficient for gaining high test accuracy.
The goal of the second scheme is to check, whether the
accuracy degrades if a classifier is trained with the data
from the first day only. This test should provide insight into
the question, if and how long an initially trained classifier
succeeds in keeping high accuracies. The first validation
scheme calculates the accuracy by using all preceding data
for training. This might however not be the best approach,
assuming that for changing EMG signals old data might well
cause degradation in accuracy. Moreover, successively grow-
ing the training set is computationally expensive. Therefore,
the third validation scheme investigates how the accuracy
evolves when using only recent data for training. This test
calculates a reference accuracy if a practical amount of data
storage is to be used.

All experiments are conducted with the data mining
framework RapidMiner [26]. RapidMiner uses the LIB-
SVM [27] implementation of support vector machines and
the WEKA [28] implementation for decision trees and multi-
layer perceptrons.

Fig. 3 presents the results for the defined schemes. The
horizontal axis denotes the test trial while the vertical axis
shows the corresponding test accuracy. Table I summarizes
the averaged behavior over all test trials. The following
observations can be derived:



Fig. 2: Motion classes: 1) extension, 2) flexion, 3) ulnar deviation, 4) radial deviation, 5) pronation, 6) supination, 7) open,
8), close 9) key grip and 10) extract index finger
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Fig. 3: Generalization accuracy trained on the first five, last five and all preceding trials.

TABLE I: Averaged test errors in % (generalization), when
trained on the first five (roughly the data recorded on a
single day), recent five and all preceding trials. Bold numbers
represent the best error rates achieved.

test error rates [%]
first 5 trials recent 5 trials all preceding trials

kNN 27.38 18.75 16.03
DT 31.19 17.02 13.28
MLP 22.84 12.48 11.15
LDA 21.27 17.63 17.54
SVM 27.35 12.77 10.34

• The accuracy degrades with rising time difference be-
tween training and test data and drops gradually if
not being retrained for all algorithms but the LDA.
While there is a difference in accuracy for LDA when
looking at the absolute numbers in Tab. I for initially
and recurrent trained variants, the distance is small com-
pared to other algorithms. After roughly three days the

differences between the fixed and retrained classifiers
becomes distinguishable in Fig. 3. Averaged over 121
trials the differences for the kNN, DTs, MLPs and
SVMs trained on the first and recent five trials are
roughly 8.6%, 14.2%, 10.4% and 14.6%, respectively.
Accuracy for LDA drops only by 3.6% when not being
trained recurrently.

• Using five recent and all preceding trials for training
entails similar shaped graphs in Fig. 3. The averaged
numbers from Tab. I shows that more data is beneficial
to all algorithms. The differences, however, are small
to justify the demanding computation. For a real-world
situation the training set has to be reduced in its size by,
for example, selecting recent data. Incremental learn-
ing [29] might be a solution to approximate the best
error rate when using all preceding data for training.

While LDA is robust when not being trained recurrently,
SVMs and MLPs excel for the other benchmarks.



V. CONCLUSION AND FUTURE WORK

From the viewpoint of the experiments, we can draw
two main conclusions: All algorithms manage to calculate
differentiated results even when distinguishing between 10
classes. Also, over time degrading classification accuracies
for initially trained pattern recognition algorithms suggesting
the existence of variably components within EMG signals.

There has been mostly anecdotal evidence that users
produce EMG patterns that will differ from trial to trial.
The reasons for the changing EMG signals may be due to
electrode movement, or behavior factors on the part of the
user. It was the intent here to investigate the nature of these
changes, how they impact classification performance, and
whether retraining may maintain classification accuracy.

In practical use, the user will have visual feedback com-
mensurate with the actuation of the prosthesis, and will
experience self-adaptation in the form reflexive error cor-
rection and longer-term learning. If the system and the user
are both adapting, this might create an unstable situation.
For the purposes of this study, we sought to characterize
EMG changes without feedback. It is important to determine
appropriate adaptation schemes that can coexist with user
adaptation in the presence of visual feedback and with the
dynamics of electromechanical prostheses worn by the user.
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