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Abstract—This paper presents the first steps towards the im-
plementation of an evolvable and self-adaptable processor cache.
The implemented system consists of a run-time reconfigurable
memory-to-cache address mapping engine embedded into the
split level one cache of a Leon3 SPARC processor as well as of
an measurement infrastructure able to profile microarchitectural
and custom logic events based on the standard Linux performance
measurement interface perf_event. The implementation shows,
how reconfiguration of the very basic processor properties, and
fine granular profiling of custom logic and integer unit events
can be realized and meaningfully used to create an adaptable
multi-core embedded system.

I. INTRODUCTION

One of the major application areas of Field Programmable
Gate Array (FPGA) devices is the pre-production development
and testing of new integrated circuit designs. System architects
can significantly reduce time-to-market when compared to the
more time and cost demanding procedure using the creation
of intermediate test Application Specific Integrated Circuits
(ASIC). With the rising chip sizes, however, prototyping with
FPGAs suffers from the notoriously time demanding electronic
design automation (EDA) tool chains making the developers
statically partition their designs and resynthesizing only the
modified chip areas. When using Xilinx’ tools [1], partial
synthesis is supported to a large extent, allowing to avoid full
system resynthesis and to reconfigure FPGA segments on-the-
fly by partial bitstreams through the Internal Configuration
Access Port (ICAP).

Besides shorter synthesis times, dynamic reconfiguration
can also be used for adaptable systems. Functions that have
to change their behavior over time can be presynthesized in
different flavors, according to the estimated adaptation scenarios,
or can be generated on the fly. Examples for microarchitectural
adaptation are the self-tuning reconfigurable cache system pre-
sented in [2] and the reconfigurable cache mappings described
in [3]. Additionally, using FPGAs for accelerating computing
tasks is emphasizing the integration of reconfigurable hardware
parts as coprocessors into a conventional architecture. This has
shown providing high performance computing capabilities even
for general-purpose embedded processors [4], [5].

However, the combination of reconfigurable fabric parts
inside conventional processor architectures is challenging. The
need for efficiently reconfigurable computing platforms has
created multiple contributions spanning specialized program-
ming [6], [7] and architecture model areas [8], [9], [10],
[11]. For instance, the ERA project [11] investigates synthesis
tools and hardware design aspects for the realization of

an efficiently reconfigurable platform for embedded systems.
Using a dedicated reconfiguration controller, the ERA system
is able to dynamically adapt instruction-sets, register files,
Network on Chip (NoC) interconnects and memory hierarchies.
Xilinx’ recent System on Chip (SoC) Zynq-7000 FPGA [12]
provides flexible ways for extending conventional processors
by reconfigurable functions. In the context of Evolvable
Hardware research [13], [14], [15], the work in [16] shows
the implementation of evolvable circuits for image filtering,
exploiting virtually reconfigurable circuits and dynamic partial
reconfiguration.

Unfortunately, the work on adaptable processors faces
many technical difficulties such as the inefficient bitstream
management and lack of performance monitoring features [17].
Both are required for self-adaptive processor designs. The
architecture presented in this paper supports both, a performance
monitoring infrastructure, which is especially designed for
profiling of the underlying microarchitecture aspects at run-
time, and an abstraction layer for managing reconfiguration
data by providing built-in Reconfiguration Controller (RC)
accompanied by a Linux device driver.

In the remainder of the paper, we first describe the concept
of an evolvable cache (Section II), then the performance
measurement architecture in Section III. In Section IV, we
present experimental results for the performance measurement
infrastructure using MiBench workloads, and show processor
reconfiguration on the example of on-the-fly cache mapping
function variation. Section V concludes the paper, outlining
future work.

II. THE EVOCACHE CONCEPT

Inside microprocessors, caching techniques play an impor-
tant role to hide the latency of the main memory access. Caching
introduces a hierarchy of intermediate memories that level the
access latencies between the slower main memory and the faster
registers of a CPU. As closer the cache memories are in the
hierarchy to the CPU registers, as faster and smaller they get.
The main memory addresses are mapped to the address spaces
of intermediate cache memories by computing the modulo
function on the main memory address. As modulo factor, the
corresponding cache size is selected. Conventional systems
are using the described memory-to-cache mapping function
because it has no temporal and resource overhead. However,
one can imagine having multiple memory-to-cache address
mapping functions tailored to different applications resulting in
better execution times. One of the promising methods to find
better cache mappings is to exploit the techniques of Evolvable



Hardware for the optimization of hardware by evolutionary
algorithms. In [3], [18], [19], [20], [21] first work on such a
system, coined EvoCache, was presented. In this case study,
we show how our proposed architecture enables to deploy
and evaluate the EvoCache idea directly on a reconfigurable
hardware platform.
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Fig. 1: Reconfigurable cache mapping. Abbreviations: IC/DC
= instruction/data cache; {I/D}M{0/1/S0/S1} = instruction /
data / cache mapping function {0/1/snooping 0/snooping 1}

An evolvable cache consists of small reconfigurable fabrics
woven into the address paths of caches and an optimization
algorithm, searching for good cache mappings and reconfiguring
the fabrics. As a multi-core system with distributed caches is
targeted, for each CPU redundant reconfigurable fabrics snoop
the inter-CPU bus and help detecting write back and write
trough collisions. Fig. 1 presents the architecture in which, the
gray parts are partial reconfigurable fabrics dedicated as the
mappings for instruction/data cache. For virtually addressed
caches the architecture needs to be extended by an additional
collision unit, not presented in Fig. 1.

An evolutionary algorithm (EA) does the optimization of
cache mappings in two phases. As indicated in Fig. 2d, the EA
takes an application and optimizes an according memory-to-
cache address mapping function regarding the execution time
iteratively and off-line. The optimization can also take other
metrics, such as the miss rates and energy consumption, and
be done on the fly. This, however, is future work.

Candidate solutions for memory-to-cache address mapping
functions are encoded using the Cartesian Genetic Programming
model (CGP) [22]. CGP is well suited to represent combina-
tional logic circuits as it encodes a two dimensional grid of
functional nodes connected by feed forward wires. Mapping of
CGP encoded circuits to an FPGA can be done in many ways.
In this work we, map CGP nodes to neighboring native look-
up tables (LUT) of an FPGA and fix the routing between the
nodes in the CGP model as well as on the FPGA to a butterfly
network. This is presented in Fig. 2a. The final architecture is
therefore quickly reconfigurable, as only FPGA LUT contents
need to be changed, and has a compact footprint. The LUTs in
our case study are fixed to have 2 inputs and can implement
up to 16 different functions each (Fig. 2b).

Fig. 2a shows an example of a reconfigurable cache function
with 8 inputs and 4 outputs. By fixing the inner routing,
the searching space gets constrained. In order to allow the
evolutionary algorithm for a more general search space, address
bits may be permuted freely before connected to the inputs
of the functional nodes in the first column of the CGP model.
Fig. 2d depicts an encoded chromosome. As the CGP routing is

TABLE I: CGP implementation

Number LUTs Partial bitstream size
used reported by ise .bit reported by bitgen

CGP nodes implemented
as 5-LUTs primitives 80 228647 bytes

fixed, the chromosome encodes only the LUT functions, starting
with the LUT in the upper left corner, followed the next LUT
in the column, and continuing column-wise. The outputs of the
last LUTs define the global outputs. As the Leon3 platform
supports cache sizes of up to 256kB/way, 16 bits are required
to encode a cache line with minimum 4 bytes / line in a direct-
mapped cache. Table I shows the hardware resource usages
for the CGP implementation, having 32 inputs, 16 outputs,
synthesized and generated with the partial reconfiguration tool
flow from Xilinx for Virtex-6.

In order to make EvoCache work with our proposed
architecture, we have allocated two partially reconfigurable
functions for each cache mapping. This way, while one
mapping is operational, the other mapping can be reconfigured
without interfering with the system. Once reconfiguration
of a mapping is done, the system has to flush the cache
before switch to the new mapping. As showed also in Fig. 1,
instruction cache structure has additional two mappings, named
ICM0/1 (Instruction Cache Mapping). Similarly, data cache has
two mappings, DCM0/1 (Data Cache Mapping), excepted it
needs more two mappings for supporting snooping operations,
DCMS0/1 (Data Cache Mapping for Snooping). The reason is
that in snooping protocol, for the same address the cache line
indexes used to check invalidation would be consistent with
the one issued by CPU. That means the cache mapping to data
cache memory has to be the same in both cases of deriving
addresses from snooping operation and from CPU issued.

III. THE PROPOSED ARCHITECTURE

Fig. 3 shows the overall baseline architecture. The architec-
ture composes of up to four Leon3 soft-core processors [23], a
reconfiguration controller (RC) connected to one of the Leon3
processors, reconfigurable regions, and performance monitoring
units connected to each of the Leon3 processors. All extensions
to the standard Leon3 platform are colored in gray.

The RC works in cooperation with a DMA controller.
This speeds up the transfer times of bitstreams located in the
main memory to the reconfigurable regions of an FPGA. The
reconfiguration regions can realize custom logic that may also
connect to the main AMBA bus. The Performance measurement
Units (PMU), one for each Leon3 core, integrate with the main
interrupt controller and are able but not limited to monitor CPU
cycles, cache misses, TLB misses, and reconfiguration times.
In order to access registers of PMUs and the RC, the Address
Space Identifier (ASI) lda/sta instructions of the SPARC
architecture are used [23]. These instructions are available in
system mode only. Especially, the ASI = 0x02 is reserved for
system control registers and is used for interfacing the presented
controllers. The following sections describe the implementations
more detailed.
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designed in details such that each of CGP nodes is a 2-LUT. (b) The 2-LUTs can be reconfigured with 16 functions. (c) On
Virtex-6, 2-LUTs implemented as CGP nodes by using 5-LUTs. (d) The encoded chromosome is reduced size by removing

inter-connections encoded parts.

A. Reconfiguration Controller

The heart of the proposed architecture is the RC, showed
in Fig. 4. It provides four main registers: the reconfiguration
control register (recon_ctrl) that starts and stops the read
and write transactions between the main memory and the
reconfiguration area, the reconfiguration data length register
(recon_len) indicating the size of the transferred data
block, the reconfigurable data address register (recon_addr)
specifying the physical memory address of the bitstream, and
the reconfiguration status register (recon stat) indicating the
status of the reconfiguration process. The memory map of the
registers in presented in Table II. Since the ASI = 0x02 is
reserved for system control registers and has an unused address
range from 0x10 to 0x1C, this region is picked for interfacing
the RC.

Fig. 5 shows the main finite state machine (FSM) of the RC,
Intf_Ctrl_Block. Inside the RC, Intf_Ctrl_Block
is responsible for interacting the master CPU. Setting
recon_ctrl(0) to ’0’ and recon_ctrl(31) to ’1’
starts reconfiguration. The RC fetches bitstream data from
memory pointed by the address register and writes it
via the asynchronous FIFOs to the Recon_Ctrl_Block
module. Three asynchronous FIFOs are reserved for com-
munication between the Intf_Ctrl_Block and the
Recon_Ctrl_Block, those are: fifo_ctrl is transmit-
ting commands to the Recon_Ctrl_Block; fifo_data
is sending bitstream data from the Intf_Ctrl_Block to
the Recon_Ctrl_Block; and fifo_fb transmits feed-
back commands from the Recon_Ctrl_Block to the
Intf_Ctrl_Block.

Recon_Ctrl_Block in turn reads the commands from
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Fig. 3: The proposed baseline of reconfigurable architecture.

recon_ctrl

recon_len

recon_addr

recon_stat

Intf_Ctrl_Block Recon_Ctrl_Block

fifo_ctrl

fifo_data

fifo_fb

clk recon. clkrst.

sync. rst.

ICAP Primitive

cse
we

di

do
busy

AHB Master

DMA Interface

ASI signals

dmao dmaiirq

Registers

Fig. 4: The reconfigurable controller with a DMA interface.

fifo_ctrl and either reads back partial bitstream or program
one of the reconfigurable fabrics. Its main FSM is depicted
in Fig. 6. For example, if the Recon_Ctrl_Block gets
the RECON_PROG command indicating reprogramming in
state RECON_CTRL_READ_CMD, it jumps to a reconfiguration
state, RECON_CTRL_PROG, reads the reconfiguration data
from the fifo_data queue, and reconfigure the FPGA
via the ICAP interface. When receiving RECON_PROG_END
command, Recon_Ctrl_Block finishes the reconfiguration
process and sends back RECON_FB_DONE command via the
fifo_fb queue.

During the reconfiguration process, Recon_Ctrl_Block
can do a quick read back of the programmed bit-
stream for error checking. Should a disparity of the pro-

grammed and read back bitstream occur, RECON_FB_ERR
is send to Intf_Ctrl_Block, which in turn updates
the recon_stat register and triggers an interrupt of
the master CPU. The handling of configuration errors
is done in the RECON_FEEDBACK_READ_DONE state of
Intf_Ctrl_Block.

At the software side, a device driver enumerated at
/dev/reconctrl is implemented for interfacing the RC.
By that abstraction, the user has just to allocate a buffer
for bitstream data, which is then handled by that driver
automatically.
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B. Infrastructure for Performance Monitoring

We have been tailoring PMUs for the Leon3 multi-core
platform. To be able to handle the performance counters prop-
erly for workloads that are migrating between the processors,
the PMUs have been replicated for each processor core and
the performance counters are stored to and are loaded from
the context of an application by the OS kernel during each
context switch. Fig. 3 shows the PMU placement in the current
implementation. The PMUs are connected to the signals driven
out from the Integer Units (IU), from L1 instruction and data
cache controllers, and from the I-TLB as well as the D-TLB
modules of the MMU. Besides conventional processor events,
reconfiguration times can also be measured by profiling the

RC.

Table III shows the address mapping for the overall PMU
system. The PMUs are connected to the memory bus in the
same way as the RC is. The ASI address range of PMUs is
0xC0-0xFC.

From the operating system side, we modified
perf_event, the current standard performance monitoring
software inside the Linux kernel, to handle PMUs. From
the user space perspective, the perf tool is used for
measurements. The perf_event interface and the perf
tool work together as follows: The perf tool invokes
an application for measurement. Depending on the input
parameters, the perf tool provides the event sources to



TABLE II: Memory map of the RC registers.

Registers accessed via ASI = 0x02
Register—32 bits ASI Address Mapping
Reconfiguration control - recon ctrl (RW):
- Bit[0]: read/write
- Bit[30..1]: reserved
- Bit[31]: activate / deactivate reconfiguration process 0x10
Bitsream address - recon addr (RW):
- Bit[31..0]: physical address of bitstream data
for DMA transfer 0x14
Bitstream length - recon len (RW):
- Bit[31..0]: length of bitstream data for DMA
transfer (in words) 0x18
Reconfiguration status - recon stat (R):
- Bit[0]: error/success
- Bit[30..1]: reserved
- Bit[31]: reconfiguration done 0x1C

TABLE III: Memory map of the PMU system. The maximum
number of event counters is limited to 7 due to the current
limitations of our system design. The maximum number of

monitored events can be up to 256. Currently, cycles,
instructions, L1:I / L1:D access and read misses as well as

L1:D write accesses and misses, and ITLB as well as DTLB
misses are supported.

Registers accessed via ASI = 0x02
Register—32 bits ASI Address Mapping
Global control (RW):
- Bit[0]: enable all event counters (en)
- Bit[1]: reset/clear all event counters (rst)
- Bit[2]: reset/clear cycles countered (cyc.rst)
- Bit[7..3]: number of event counters supported
- Bit[31]: reset/clear IRQ pending 0xC0
overflow status (RW):
- Bit[0]: overflow cycle counter
- Bit[n..1]: overflow for event counter - n..1
- Bit[31]: indication for IRQ pending 0xC4
Cycle counter (RW):
- Bit[31..0]: counter value is being monitored 0xC8
Cycle counter control (RW):
- Bit[7..0]: reserved
- Bit[8]: enable the counter (en)
- Bit[9]: reset/clear the counter (clr)
- Bit[10]: counting kernel/user mode (su)
- Bit[11]: interrupt enable (irq en) 0xCC

The ith event counter (RW):
- Bit[31]: counter value is being monitored 0xD0 + 8 · (ith)

The ith event counter control (RW):
- Bit[7..0]: event identifier (event id)
- Bit[8]: enable the counter (en)
- Bit[9]: reset/clear the counter (clr)
- Bit[10]: counting kernel/user mode (su)
- Bit[11]: interrupt enable (irq en) 0xD4 + 8 · (ith)

monitor to kernel’s perf_event measurement infrastructure.
The perf_event infrastructure, in turn, configures the
PMU infrastructure and starts profiling. When the application
finishes its execution, the perf tool reads out the event
counters and aggregates the final results via the perf_event
interface. An example for the output of the perf tool is
given in Fig. 7, printing out from our experimental platform,
Leon3.

IV. PRELIMINARILY EXPERIMENTAL RESULTS

This section reports on our preliminarily experimental
results for the reconfigurable application of evolvable cache

# perf stat -e cycles,instructions,
L1-dcache-loads,L1-dcache-load-misses,
L1-dcache-stores,L1-dcache-store-misses
./queens -c 14

14 queens on a 14x14 board...
...there are 365596 solutions

Performance counter stats for ’./queens -c 14’:
8295258591 cycles
5309555048 instructions # 0.640 IPC
965961200 L1-dcache-loads
50932 L1-dcache-load-misses
191890081 L1-dcache-stores
27365021 L1-dcache-store-misses
115.170000000 seconds time elapsed
# _

Fig. 7: Example: Launch and output of perf tool.

mappings. The system configuration for the LEON3 platform is
shown in Table IV. We have synthesized the LEON3 platform
and programmed it to a Xilinx ML605 Virtex-6 board. The
root file system is located on a CF card.

TABLE IV: Leon3 platform and system configuration

Clock Frequency 75Mhz
Integer Unit Yes
Floating Point Software
Instruction Cache 2-way associative, 8KB, 32bytes/line, LRU
ITLB 8 entries
Data Cache 2-way associative, 8KB, 16bytes/line, LRU
DTLB 8 entries
MMU Yes
MP IRQ Controller External IRQ (EIRQ) = 14
PMU New feature supported
Linux Kernel 2.6.36.4 patch from Gaisler
Compiler pre-built Linux toolchain from Gaisler

To demonstrate the complete architecture, we have set up
experiments using four different Mibench test functions and
measured their performances for different cache mappings. The
simulations have been done using a single-core system only
and all experiments have been repeated ten times. The results
are presented in Table V.

In the first experiment the reference behavior of a regular
system with a conventional cache (or mapping by the modulo
function) has been measured. In the second experiment the least
significant address wires have been swapped while indexing
the caches. That is, for the instruction cache the sixth and
seventh address bits have been mapped to the second and first
cache index bits. For the data cache, the fifth and sixth address
bits are mapped for the second and first cache index bits. In
the third experiment, we have simulated the unusual case of
having only two cache lines. All memory addresses are mapped
according to the sixth and fifth address bits to two cache lines
of the instruction and data caches, respectively.

The first observation is that the instruction counts have been
measured accurately for all experiments. While this seems to
be a requirement rather than an achievement, a measurement
infrastructure integrated into a system using caches tends to
suffer from small jitter that depends on the context switching



TABLE V: Statistical data collected for a subset workloads of MiBench by dynamically reconfiguring different cache mappings.
Results compared by running perf tool 10 times on the same application, on one core platform.

Exp. 1: Conventional cache Exp. 2: Swapping LSB cache index bits Exp. 3: Using only 2 cache lines
Benchmark Inst. IPC L1:I L1:D IPC L1:I L1:D IPC L1:I L1:D

misses [%] misses [%] misses [%] misses [%] misses [%] misses [%]

basicmath 9.93E+08 0.596 2.47 0.91 0.596 2.47 1.01 0.184 38.38 52.48
jpeg 3.61E+07 0.567 0.62 17.26 0.567 0.62 17.30 0.191 27.64 79.77
Dijkstra 5.75E+07 0.486 0.79 13.46 0.487 0.79 13.46 0.114 49.26 60.07
FFT 1.18E+09 0.599 2.06 0.72 0.598 2.06 0.73 0.153 47.46 59.86

mechanism of the operation system and the prefetched cache
lines.

The next observation is that the cache misses for the
conventional cache and the cache mapping with swapped least
significant bits (Experiment 2) are almost identical for the
instruction and only slightly different for the data cache. An
explanation for this behavior can rely on the fact that the
instruction cache fetches the same sequence of memory entries
for all experiment repetitions while the data cache access pattern
may also depend on the initial state of the pseudo random
number generator used in the applications.

And the last observation is that if using only two cache
lines (Experiment 3), the miss rates for both caches increase
dramatically, as expected.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a reconfigurable architec-
ture and a performance measurement infrastructure for building
adaptable processors. We have demonstrated that our system can
be executed using different cache mapping functions and that
the system can be measured precisely. Based on these results,
next steps of our work are the incorporation of an optimization
algorithm into the system and the online adaptation of cache
mappings.
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