A Hardware/Software Infrastructure for Performance
Monitoring on Leon3 Multicore Platforms

authors omitted for blind review

Abstract—Monitoring applications at run-time and evaluating
the recorded statistical data of the underlying micro architecture
is one of the key aspects required by many hardware architects
and system designers as well as high-performance software
developers. To fulfill this requirement, most modern CPUs for
High Performance Computing (HPC) have been equipped with
Performance Monitoring Units (PMU) including a set of hardware
counters, which can be configured to monitor a rich set of
events. Unfortunately, embedded and reconfigurable systems are
mostly lacking this feature. Towards rapid exploration of High
Performance Embedded Computing in near future, we believe
that supporting PMU for these systems is necessary. In this paper,
we propose a PMU infrastructure, which supports monitoring
of up to seven concurrent events. The PMU infrastructure
is implemented on an FPGA and is integrated into a Leon3
platform. We show also the integration of our PMU infrastructure
with the perf_event, which is the standard PMU architecture
of the Linux kernel.

I. INTRODUCTION

For many decades, computer architects have been using
simulators to expose and analyze performance metrics by
running workloads on the simulated architecture. The results
collected from simulation may be inaccurate in some cases
due to the workloads running on top of an operating system
or the simulators just considering not all the relevant micro-
architectural aspects. More recently, so-called full system sim-
ulators such as gem5 [1] are being used by many researchers
and system architects in order to accurately gather full statisti-
cal data at the system level. In case the investigated architecture
is already available as an implementation, performance data
can also be collected at runtime with high accuracy and often
with higher speed than simulation [2]. To that end, many
modern high-performance processors feature a performance
monitoring unit (PMU) that allows to collect performance data.
A PMU is essentially a set of counters and registers inside
the processor that can be programmed to capture the events
happening during the application execution. At the end of a
measurement, performance monitoring software reads out the
PMU counter values and aggregates the results.

Performance monitoring is not only useful in high-
performance computing but also in embedded and reconfig-
urable computing. Especially the exploration of reconfigurable
computing has led many researchers to propose ideas for
system optimization and adaptation at runtime, such as self-
tuning caches [3]. Runtime adaptation techniques demand for
a hardware/software infrastructure capable of system perfor-
mance measurements in real-time. While PMUs have recently
been added to some well known embedded processors such
as ARM [4], Blackfin [5], and SuperH [6], as well as to the
ARM cores in the Xilinx Zynq [7], a performance monitoring
feature is mostly lacking for soft cores embedded into FPGAs.

The main contribution of this paper is the presentation
of a hardware/software infrastructure for performance moni-
toring for the Leon3 platform, which is a widely-used open
source soft core based on the Sparc-v8 architecture [8]. In
the remainder of the paper, we first discuss the background
of PMUs in Section II and then describe the hardware and
software implementation of our PMU for Leon3 multicores
in Section III. In Section IV we present experimental results
for MiBench workloads and show the overhead incurred by
performance monitoring. Finally, Section V concludes the

paper.

II. BACKGROUND — PERFORMANCE MONITORING UNITS

Performance analysis based on performance monitoring
units (PMUs) requires both, hardware and software infras-
tructure. The hardware infrastructure for recording statistical
data at the micro-architectural level during program execution
basically includes sets of control registers and counters. The
control registers can be programmed to specific events that
should be captured which are then counted. The configuration
written to control registers also determines whether and which
interrupts are generated on a counter overflow, whether data
is collected only for user mode or also for kernel mode
execution, and generally to enable or disable data collection.
While most modern processors include some form of PMU [9],
the number of measurable events and hardware counters varies
in different processors [4], [10]. Events commonly available
for monitoring include the number of CPU cycles, miss rates
for different levels of instruction, data or unified caches, for
TLBs, or IPC values.

The software infrastructure for a PMU needs to set the
configuration for monitoring, start and stop data collection, and
finally read out and aggregate counter values to performance
measures. There exist several tools and system interfaces sup-
porting the collection of statistical data from PMUs. Among
them, PAPI [11] and the perf tool [12] are commonly
used in high-performance computing. These tools rely on a
system interface running in kernel mode to access the PMU
hardware counters. Running the system interface in kernel
mode is advantageous since the hardware counters can easily
be saved and restored during a context switch, allowing for
per-thread performance monitoring. In the Linux operating
system, two patches for performance monitoring are widely
used: perfctr [13] and perfmon2 [14]. More recently, the
perf_event interface [15] and the perf tool have been
included into the main Linux kernel source code. The perf
tool tightly works with the perf_event interface and
makes performance monitoring straight-forward for users since
there is no need to compile and add patches.

III. PMU DESIGN AND INTEGRATION

Leon3 [8] is a 32-bit open source processor platform from
Gaisler Research implementing the Sparc-v8 architecture [16].
The platform supports multiple cores with a shared memory
and is popular among researchers due to the rich set of
supported tools, operating systems, and its extendability. In
this chapter, we describe the architecture of our performance
measurement units and how they integrate into the Leon3
platform as well as into the standard Linux performance
measurement infrastructure.

A. The Architecture

We have been tailoring PMUs for Leon3 multi-core ar-
chitectures. To be able to handle properly the performance
counters for workloads migrating between the processors, the
PMUs have been replicated for each processor core and the
performance counters are stored to and are loaded from the
context of an application by the OS kernel during each context
switch. Fig. 1 shows the PMU placement in our current
implementation, which is tailored for processor monitoring.
The PMUs are connected to the signal pulses driven out
from the Integer Units (IU), from L1 instruction and data
cache controllers, and from the I-TLB as well as the D-
TLB modules of the MMU. The standard open-source Leon3
architecture does not include L2 caches or floating-point units.
However, our PMU architecture can easily be extended to
monitor and aggregate events from such sources or from
custom hardware modules and reconfiguration controllers in
reconfigurable multiprocessor-on-chip systems.

Interrupt level &

l‘ Interrupt ACK ‘ i ‘

Leon3, core 0 Leon3, core 3
MP IRQ L1 | L L1 | L
Controller «—>| PMU 1$ | D$ pvu | 18 | D$
< MMU > MMU
-« # # Shared AMBA Bus 1L>

Fig. 1: PMU modules are located close to the monitored
event sources. The interrupt signals for overflowed events are
handled by the MP IRQ controller module.

Fig. 2 illustrates the hardware implementation of the overall
PMU system. Each event counter subsystem consists of an
event source multiplexer, a control logic block, a counter
with according overflow logic and a common logic for the
overflow interrupt generation. The heart of a performance
counter subsystem is its control block. The control block takes
input from a global and a local control register as well as
the interrupt acknowledge from the interrupt controller. The
functionality of the global register follows the ARM Cortex-
A9 PMU architecture [4] and allows us to reset and enable
all event counters by a single register access. This feature is
of use for the Linux perf_event performance monitoring
infrastructure.

Through the local control register a performance counter
subsystem can be cleared (clr) and enabled (en), and counting

can be started even if the measured processor core is entering
the super user mode (su). Furthermore, the local control regis-
ter determines whether an overflow interrupt should triggered
and which event to measure. Currently defined event sources
are the CPU clock cycle count, the number of executed
instructions, the number of instruction and data cache read
accesses, the number of instruction and date cache read misses,
and the number of data cache write accesses as well as misses.
The signal input of the first counter subsystem is hardwired
to monitor the execution time to allow for an accurate mea-
surement basis to which other measurement counters can be
normalized to.

The interrupt acknowledge input signal of the control
block depends on the situation of the associated counter. If
the counter reaches its overflow threshold and the interrupt
generation is enabled for this measurement subsystem, an
interrupt is generated and a status bit in PMU’s global interrupt
overflow register is set. The overflow comparator signals the
overflow to the control logic which, in turn, clears and sets
its counter inactive. The activated software interrupt handler
checks, which event counter has triggered an interrupt and
updates the according perf_even counter variables. Afterwards,
the interrupt handler releases the event counter by pulsing
an interrupt acknowledgment signal through MP IRQ to the
control logic blocks.

The presence of an interrupt logic is the reason for selecting
32 bit wide event counter registers. While using wider register
widths, for instance 64 bits, would make a counter overflow
less likely, there are cases where it is required to generate
an interrupt after counting some specified amount of events.
Additionally, even counting events at 100MHz will cause
an interrupt request roughly every two minutes. Since the
time overhead for the interrupt handler needed to serve an
PMU interrupt is negligible, we avoided wider event counting
registers for the sake of a compact architecture and a smaller
memory map. However, the counter widths and the memory
map can be easily adopted in our design if wider counters are
required.

B. PMU Registers - Address Mapping and Access

Table I shows the address mapping for the overall PMU
system. Instead of defining new instructions for reading and
writing PMU registers, the extended Address Space Identifier
(ASI) 1da/sta instructions of the Sparc architecture are used [8].
These instructions are available only in system mode. The
ASI = 0x02 is reserved for system control registers and
has an unused address range from 0xCO to OxFC, which is
used to clamp the PMU registers. The following sample code
demonstrates how these registers can be accessed:

u32 val;
asm volatile ("1lda [%1] %2, %0":
"=r"(val): "r"(0xCO), i"(0x02));

In this sample code, ASI value 0x02 encoded in the
instruction Ida makes the IU load the current value in the global
control register at address 0xCO0, storing it in the variable val.

control register global control register

counter register overflow status register

cyc. rst|rst | en

IU & Cache
Controller

[sufar [enlra_en
l v VvV Vv
clear
event F ”
counter 0
sianals Control increment »
logic interrupt enable
SUmode > overflow >
—

increment

interrupt enable

overflow_value

overflow
interrupt

MP IRQ
Controller

q

overflow

interrupt
ack

overflow_value

|:| Fixed cycle counter

- The ith event counter configured

Fig. 2: The design for PMU module per core. The PMU monitors the event signals and manages the counters, depending on a
set of control registers. The signals for the overflow interrupt are handled by MP IRQ Controller.

TABLE I: Memory map of the PMU system. The maximum
number of event counters supported is limited to 7 due to the
current limitations of our system design. The maximum
number of monitored events can be up to 256. Currently,
cycles, instructions, L1:1 / L1:D access and read misses as
well as L1:D write accesses and misses, and ITLB as well as
DTLB misses are supported.

Registers accessed via ASI = 0x02
AST Address Mapping

Register—32 bits

Global control (RW):

- Bit[0]: enable all event counters (en)

- Bit[1]: reset/clear all event counters (rst)

- Bit[2]: reset/clear cycles countered (cyc.rst)
- Bit[7..3]: number of event counters supported
- Bit[31]: reset/clear IRQ pending

overflow status (RW):

- Bit[0]: overflow cycle counter

- Bit[n..1]: overflow for event counter - n..1

- Bit[31]: indication for IRQ pending

Cycle counter (RW):

- Bit[31..0]: counter value is being monitored
Cycle counter control (RW):

- Bit[7..0]: reserved

- Bit[8]: enable the counter (en)

- Bit[9]: reset/clear the counter (clr)

- Bit[10]: counting kernel/user mode (su)

- Bit[11]: interrupt enable (irq_en)

The i!

- Bit[31]: counter value is being monitored

0xC0

0xC4

0zC8

0xCC

event counter (RW):
02D0 + 8 - (i)

The ith event counter control (RW):

- Bit[7..0]: event identifier (event_id)

- Bit[8]: enable the counter (en)

- Bit[9]: reset/clear the counter (clr)

- Bit[10]: counting kernel/user mode (su)

- Bit[11]: interrupt enable (irq_en) OxD4 + 8 - (ith)

C. Handling Overflow Interrupt

There are two basic ways of introducing interrupt sources
to Leon3 processors. First, peripheral devices that are con-
nected to the AMBA bus can use the AMBA interrupt lines.
The AMBA bus interrupt controller has then to prioritize and
relay the interrupt requests to the Leon3 MP IRQ controller.
A PMU unit using this method of interrupt generation would
need to implement an AMBA bus slave controller and accept
the temporal overhead of the AMBA bus interrupt controller.
Additionally, interrupts from other peripheral devices may have
an impact on the measurement precision.

The second option, and the one we have chosen in this
work, for interfacing to the interrupt logic of the Leon3
processor is to directly connect interrupt sources to the internal
logic of the MP IRQ controller. To that end, all PMU interrupt
request lines are aggregated by an OR gate and sourced into
the external interrupt (EIRQ) handling circuitry of the MP IRQ
controller. This is shown in Fig. 3. This method has also the
that the number of AMBA bus devices is not increased.

D. System Integration - The Software Stack

Fig. 4 presents the integration of our PMUs into the
standard Linux perf_event infrastructure. Instead of ex-
tending the standard Sparc-64 PMU code, we have adopted
the perf_event.c code from the ARM PMU implementation
due to similarities in the interrupt handling mechanism.

From the user space perspective, the perf_event inter-
face and the perf tool work together as follows: The perf
tool invokes an application for measurement. Depending
on the input parameters, the perf tool provides the event
sources to monitor to kernels perf_event measurement

IRQ Priority
Pending select
APBI.PIRQ[31:1] [15:1]
> IRQO[0].IRL[3:0]
[15:1]
[eirq+16] [eirq]
IRQ IRQ [15:1] o
Force[0] mask[0] Priority
encoder
Core 0
IRQ frol
SM’U m [eirq+16]
Pending
OVERFLOW [eirq+16] —D_
INTERRUPT #@ L Z/
[15:] IRQO[N].IRL[3:0]
[15:1]
[eirq+16] [eirq]
IRQ IRQ 15:1] jori
Force[0] mask[0] [! Priority
encoder
- Coren
IRQ from
PMU [eirg+16]
Pending
OVERFLOW :
INTERRUPT [n [eirg+16] D_
— > Q Z/

Fig. 3: The additional logic gates inside the MP IRQ Controller of the Leon3 platform support handling PMU interrupts for
overflowed event counters.

infrastructure. The perf_event infrastructure in turn con-
figures the PMU infrastructure and starts profiling. When the
application finishes its execution, the perf tool reads out
the event counters and aggregates the final results via the
perf_event interface. An example for the output of the
perf tool is given in Fig. 5.

IV. EXPERIMENTS AND RESULTS

This section reports on our experiments and results. The
used system configuration for the Leon3 platform is shown
Table III. We have synthesized the Leon3 platform and pro-
grammed it to a Xilinx ML605 Virtex-6 board. The root file
system is located on a CF card. Since our goal was to focus on
collecting and analyzing statistical data for embedded system
workloads, we have chosen a subset of MiBench [17], a free
benchmark suite, for experimentation.

A. Hardware resource usage

Before presenting the benchmark results, Tab. II sums
up the hardware overhead for the PMU subsystem when
implemented for a single, dual and quad-core Leon3 platform.
For the single-core variant the overhead for flop flops and
look-up tables amount for 2 and 4.4 per cent, respectively.
When doubling the core number of a Leon system, the integer
units get duplicated. Busses and peripherals are typically not
replicated. Therefore, the size of a Leon system grows linear
with the number of cores but the hardware effort for the

TABLE II: Hardware resource usage for implementing a
Leon3 PMU and the total overhead in % compared to a
PMU-less Leon3 system.

1 core 2 cores 4 cores
FF LUT FF LUT FF LUT
PMU 303 886 606 1641 1212 3956
MP IRQ without PMU 101 205 173 354 285 661
MP IRQ with PMU 102 210 175 368 289 694
Leon3 with PMU 15371 20956 19879 | 29413 | 28848 | 47142
Increase [%] 2.0 4.4 3.2 6.0 4.4 9.2

busses and peripherals stays almost unchanged. This explains,
why when doubling and quadrupling the core number and the
according PM units the overhead for the PM units compared
to the total size of an Leon3 platform increases form 2 over
3.2 to 4.4 per cent for the number of flip flops and from 4.4
over 6.0 to 9.0 per cent for the number of look-up tables.

B. Measurement Output

Table IV displays all our measurements for the selected
benchmarks. We have monitored eight events: CPU cycles,
instructions, L1:I load misses, L1:I loads, L1:D loads, L1:D
load misses, L1:D stores, and L1:D store misses. The pre-
sented results cover events captured during user mode, but
exclude kernel mode execution. Since in our prototypical
implementation the maximum number of event counters is

}

USER | application | | perf tool
Linux Kernel
perf event
0os
arch/sparc/kernel/ N }
perf_event.c —|—|/
T1
- =
HW [Leon3 | PMU | |

}

/_/

static inline u32 leon3pmu_read_counter(int idx) {
asm volatile (" lda [%1] %2,
"r"(idx*8 + 0xC8),

static inline void leon3pmu_ctrl write(enum
leon3_counters counter, unsigned long val){
asm volatile (" sta %0,

static irqgreturn_t leon3pmu_handle_irq(int irqg_num,
void *dev){
u32 val;

//read overflow register
asm volatile (" 1lda [%1] %2,

/__/

%0 ":
i"(0x02));

"=r" (value)

[$1] %2 \n"

// no outputs
"r"(val), "r"(counter*8 + 0xCC), i"(0x02)
"memory");

%0 ": "=r"(val)

"rv(0xC4), "i"(0x02));

Fig. 4: System integration with perf_event.

perf stat -e cycles,instructions,
Ll-dcache-loads, Ll-dcache-load-misses,
Ll-dcache-stores, L1-dcache-store-misses
./queens -c 14

14 queens on a 14x14 board...
...there are 365596 solutions

Performance counter stats for ’./queens -c 14':

8295258591 cycles

5309555048 instructions # 0.640 IPC
965961200 Ll-dcache-loads

50932 Ll-dcache-load-misses
191890081 Ll-dcache-stores

27365021 Ll-dcache-store-misses
115.170000000 seconds time elapsed

#

Fig. 5: Example: Launch and output of the perf tool.

seven, we had to invoke the perf tool twice in order to
avoid multiplexing events, which can lead to inaccurate results
during measurement. The first invocation of the perf tool
is for counting the number of CPU cycles and instructions, the
second for gathering the remaining events. We have repeated
each measurement for 10 times and computed the coefficient
variation (CV=c/p), i.e., the standard deviation divided by the
mean average.

The chosen benchmark programs are deterministic in the
sense that for a given input data set they execute exactly the
same instructions. The reason that the collected values for
the number of instructions is not deterministic is the perf
tool, which also runs in user space. Once the perf tool
receives a signal indicating that the application stops, the perf
tool has to spend time for disabling the counters in the
event control registers. This leads to a certain deviation in
consecutive measurements., which are however, quite below

TABLE III: Leon3 platform and system configuration

Clock Frequency 75Mhz

Integer Unit Yes

Floating Point Software

Instruction Cache 2-way associative, 8KB, 32bytes/line, LRU
ITLB 8 entries

Data Cache 2-way associative, 4KB, 16bytes/line, LRU
DTLB 8 entries

MMU Yes

MP IRQ Controller External IRQ (EIRQ) = 14

PMU New feature

Linux Kernel 2.6.36.4 patch from Gaisler
Compiler Pre-built Linux toolchain from Gaisler

1%.

The variations in the number of cycles, L1:I read, L1:D
read, and L1:D store miss events can be explained by initially
varying states of the cache lines. Thus, for more accurate
results the presented PMU infrastructure should be extended
by a cache flush and a preheat procedure, to unify the starting
conditions for all benchmarks.

V. CONCLUSION AND DISCUSSION

In this paper, we present a performance measurement
infrastructure for the single- and multicore Leon3 process-
ing platform. The infrastructure integrates seamlessly into
the standard Linux performance measurement architecture
perf_event and allow for a comfortable and accurate
analysis of microarchitecture measurements using the standard
Linux profiling tools. From the reconfigurable system perspec-
tive, the presented performance measurement infrastructure
support also monitoring events generated by the reconfigurable
platform, such as partial reconfiguration times.

TABLE IV: Statistical data collected for a subset workloads of MiBench. Coefficient of variation (CV= o /) compared by
running perf tool 10 times on the same application.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

1 core 2 cores 4 cores
Benchmark Cycles [%] Inst. [%] Time [s] 1PC Cycles [%] Inst. [%] Time [s] 1PC Cycles [%] Inst. [%] Time [s] 1PC
basicmath 0.006 0.000 23.005 | 0.596 0.052 0.000 23.176 | 0.594 0.040 0.000 23.434 | 0.594
bitcounts 0.003 0.000 0.821 | 0.758 0.017 0.000 0.888 | 0.757 0.056 0.000 0.893 | 0.755
gsort 0.017 0.001 0.978 | 0.373 0.081 0.000 1.019 | 0.373 0.173 0.000 1.048 | 0.371
jpeg 0.063 0.002 1.085 | 0.567 0.082 0.001 1.147 | 0.563 0.169 0.000 1.161 | 0.564
dijstra 0.052 0.001 1.767 | 0.486 0.007 0.000 1.81 0.486 0.123 0.056 1.819 | 0.485
patricia 0.007 0.001 5.421 0.207 0.040 0.001 5479 | 0.206 0.145 0.000 5.617 | 0.206
stringsearch 0.023 0.004 0.077 | 0.255 0.136 0.000 0.147 | 0.251 0.109 0.000 0.152 | 0.251
FFT 0.007 0.000 27.131 | 0.599 0.008 0.000 27.232 | 0.598 0.042 0.003 25.419 | 0.597
[CV [0.022] 0.001] [[0.053] 0.000 | [[0.107] 0.007] [|
1 core 2 cores 4 cores

Benchmark L1:I load L1:D load L1:D store L1:I load L1:D load L1:D store L1:I load L1:D load L1:D store

misses [%] ‘ misses [%] ‘ misses [%] misses [%] ‘ misses [%] ‘ misses [%] misses [%] ‘ misses [%] ‘ misses [%]

basicmath 0.040 0.247 0.346 0.078 0.546 1.474 0.140 0.463 1.232

bitcounts 0.136 0.176 0.382 0.102 0.102 0.318 0.256 0.106 0.472

gsort 0.027 0.018 0.160 0.041 0.046 0.154 0.139 0.030 0.092

jpeg 0.125 0.024 0.076 0.537 0.045 0.066 2213 0.079 0.055

dijstra 0.052 0.025 0.104 0.052 0.018 0.024 0.601 0.187 0.539

patricia 0.006 0.150 0.184 0.004 0.150 0.124 0.012 0.251 0.232

stringsearch 0.108 0.010 0.009 0.189 0.040 0.117 0.170 0.053 0.039

FFT 0.057 0.166 0.393 0.062 0.298 2.558 0.298 0.659 2.243

[CV [0.069 [0.102 [0.207 [0.133 [0.156 [0.604 [0.479 [0.229 [0.613]
REFERENCES [16] SUN Microsystems, SPARC V8 Manual. [Online]. Available: http:

N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1-7, 2011.

D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of Performance
Counter Measurements,” in Performance Analysis of Systems and Soft-
ware (ISPASS), 2009, pp. 23—32.

A. Gordon-Ross and F. Vahid, “A self-tuning configurable cache,” in
Design Automation Conference (DAC), 44th ACM/IEEE, 2007, pp. 234
- 237.

ARM, ARM Cortex-A9, Technical Reference Manual.
Available: http://infocenter.arm.com

ADSP-BF535 Blackfin Processor Hardware Reference. [Online]. Avail-

able: http://www.analog.com/static/imported-files/processor_manuals/
ADSP-BF535_hwr_rev3.3.pdf

[Online]. Available: http://documentation.renesas.com/doc/products/
tool/rej10b0110\ _sh7750.pdf

Xilinx, Zyng-7000 All Programmable SoC Technical Reference Manual,
UGS585 (v1.7) ed., Xilinx Inc., Feb. 2014.

Aeroflex Gaisler. [Online]. Available: http://www.gaisler.com/products/
grlib/grlib.pdf

B. Sprunt, “The Basics of Performance Monitoring Hardware,” IEEE
Micro, vol. 22, no. 4, pp. 64—71, 2002.

SUN Microsystems, OpenSPARC T2 Core Microarchitecture
Specification. [Online]. Available: http://www.oracle.com/technetwork/
systems/opensparc

J. Dongarra, K. London, M. S., P. Mucci, H. Terpstra D.and You, and
M. Zhou, “Experiences and Lessons Learned with a Portable Interface
to Hardware Performance Counters,” in PADTAD Workshop, IPDPS,
2003, p. 289.

The linux perf tool. [Online]. Available: http://www.perf.wiki.kernel.
org/index.php

[Online].

M. Pettersson, perfctr. [Online]. Available: http://user.it.uu.se/~mikpe/
linux/perfetr

Perfmon2: A flexible performance
Linux. [Online]. Available:
0ls2006v1-pages-269-288.pdf

V. M. Weaver, “Linux perf event features and overhead,” in FastPath
Workshop, 2013.

monitoring interface for
https://www.kernel.org/doc/ols/2006/

[17]

/Iwww.gaisler.com/doc/sparcv8.pdf

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in IEEE 4th Annual Workshop on Workload Charac-
terization, 2001, pp. 3-14.

