
Accurate Private/Shared Classification of Memory
Accesses: A Run-time Analysis System for the

LEON3 Multi-core Processor
Nam Ho, Ishraq Ibne Ashraf, Paul Kaufmann and Marco Platzner

Department of Computer Science, University of Paderborn, Germany
Email: namh@mail.upb.de, paul.kaufmann@gmail.com, platzner@upb.de

Abstract—Related work has presented simulation-based ex-
periments to classify data accesses in a shared memory multi-
core into private and shared. This information can be used
to selectively turn on/off cache coherency mechanisms for data
blocks, which can save memory bus bandwidth, minimize energy
consumption, and reduce application runtimes. In this paper
we present an implementation of a private/shared classification
mechanism on a LEON3 SPARC multi-core processor running
the Linux 2.6 kernel. Our mechanism is paged-based and allows
for classifying and counting data accesses at run-time. Compared
to previous work, our system provides more accurate, i.e.,
realistic, data as it includes a real multi-core architecture and
an OS. Additionally, our prototype allows us to quantitatively
evaluate the overhead for the classification mechanism. We test
our system with sequential and parallel benchmarks from the
Mibench, ParaMibench, PARSEC, and SPLASH2 application
suites. The results show that parallel benchmarks are promising
targets for selectively controlling coherency mechanisms and that
the run-time overheads induced by our mechanism are rather
small.

I. INTRODUCTION

Modern shared memory multi-core processors usually im-
plement one to two levels of private cache for each of the
processing cores and one to two levels of shared cache. To
achieve memory coherency, hardware-based cache coherence
protocols are used. In a snooping-based protocol all outermost
private caches are connected by a shared communication
medium such as a bus or switch. Every outermost private cache
holding a copy of a data block can track the sharing status
of this block by monitoring the communication medium. This
could involve, for example, broadcasting invalidation messages
to the cache controllers of other core’s private caches. Related
work has argued that pessimistic strategies for activating the
coherency mechanism, i.e., activating the mechanism although
it is not required, may lead to significant computational and
energy overheads [1]–[3]. The reported numbers for sequential
and parallel applications revealed that on average 75% to
79% of the modified cache blocks are privately cached only
by a single core [3], [4]. Turning off coherency for these
cache blocks can save system bus bandwidth, minimize energy
consumption, and reduce application runtimes.

In this paper we present a run-time classification system
that detects whether memory accesses hit a private or a shared
page. The novel contributions of this work are:

1) We present a private/shared memory page clas-
sification system build into the Memory Management
Unit (MMU) of a LEON3 multi-core processor imple-
mented on a Xilinx Virtex 6 FPGA. Our implementa-
tion comprises both LEON3 hardware extensions and
extensions to the Linux 2.6 OS kernel, where we have
added interrupt handlers for managing and controlling
private/shared monitoring during run-time.

2) We provide a definition for private/shared mem-
ory access classifications and leverage the performance
monitoring unit (PMU) module of [5] to integrate
private/shared event counters into the standard
Linux perf monitoring system for micro-architectural
events.

3) We evaluate our system extensively regarding
the computational overheads introduced by the
private/shared classification system based on a
representative set of sequential and parallel applications.

To the best of our knowledge, this work is the first to
prototypically implement a private/shared memory ac-
cess classification. Compared to previous simulation-based
approaches our work provides more accurate, i.e., realistic,
data as it includes a real multi-core architecture and an OS.
Additionally, the prototype allows us to quantitatively evaluate
the overhead for the detection mechanism, which is important
to judge the practicability of a system that switches on and off
the cache coherency mechanism selectively for data blocks at
run-time.

The remainder of the paper is structured as follows: Section
II provides an overview over related approaches. Section III
discusses basics of private/shared data classification and
includes our definition of these terms. The system architecture
of our implementation including our extensions to the LEON3
multi-core and to the Linux 2.6 OS kernel are elaborated on
in Section IV. Section V presents result from our experiments
with sequential and parallel benchmarks and, finally, Section
VI concludes the paper.

II. RELATED WORK

Noticeable work on data classification was presented by
Hardavellas et al. [3], who demonstrated it as one of the
key requirements for the implementation of an efficient data
placement policy for shared distributed Last Level Caches

(LLCs) in tiled architectures. In such an architecture the
latency of an LLC hit depends on the physical location of
the requested data in cache memory, which is partitioned into
slices distributed among tiles. The authors propose putting
data blocks classified as private into slices at the requesting
cores to achieve minimal access latencies and avoid triggering
the coherence mechanism. Shared data blocks accessed by
multiple cores should be placed at a fixed slice to simplify the
coherency mechanism. The central observation of the paper
is that 72% to 90% of memory accesses are private and that
switching off coherency may have a significant impact on the
coherency overhead for these data. This potential has been
investigated in follow-up work [1], [2] by proposing strategies
for temporarily deactivating the coherence mechanism.

Other publications on private/shared classification
of memory accesses considered energy minimization for
caches [6], improved system performances [7], [8], reduced
latency of virtual-to-physical-address translation [9], and sim-
plification of multi-core coherence protocol design [10].

All related work approaches presented so far, except [7], act
at page granularity, where whole pages and the page accesses
are classified either as private or shared. The classifi-
cation bits are usually stored in Page Table Entries (PTEs)
and the OS is responsible for managing and updating their
status. For such an OS-based approach the hardware overhead
is negligible. Pure hardware-based approaches were proposed
in [4], [11]–[13]. Although they can avoid OS modifications,
the area requirements are significantly increased. For example,
direct TLB-to-TLB communication channels are required for
exchanging classification information among cores [4], [11]
and dedicated hardware modules are needed for directory-
based systems [12], [13].

An a-priory approach based on static code analysis was
proposed by Li et al. [7]. The authors analyze memory
accesses of multi-threaded applications and predict cores that
will potentially share variables. Inherent to such an analysis
technique is, however, that its accuracy depends heavily on
the initial conditions, which have to be estimated, and on the
dynamics of OS scheduling.

While our approach shares the page-level granularity of
private/shared classification with most of the related
work, it differs in the following aspects: First, with the integra-
tion of private/shared monitoring into a real processor
implementation and OS our experiments deliver accurate clas-
sifications compared to previous simulation-based approaches
that involve abstractions of the processor architecture and/or
the OS. Second, we are able to quantify the computational
overhead introduced by the private/shared detection and
classification.

III. PRIVATE/SHARED CLASSIFICATION

When classifying data as private or shared two questions
arise: What is a meaningful data block granularity and when
is a data block actually considered as shared data? While one
can imagine to tag single bytes, words, and even arbitrary-
sized memory blocks as private or shared, from the

perspective of processor architecture a cache block is the
smallest reasonable granularity. A cache block is the smallest
chunk of data a processor usually transfers to and from the
main memory in one step. Thus, even if a smaller granu-
larity was chosen, for example by allowing a cache block
to have multiple regions with different private/shared
categorizations, we would still have to handle the whole cache
block when resolving incoherencies. The next larger canonical
granularity for private/shared classification is a memory
page. Paging provides a partitioning of physical and virtual
memory address spaces into blocks of usually the same size
for an efficient management of virtual address spaces. Tagging
pages private/shared is the most popular approach in
related work as the implementation overheads for the MMU
and OS are relatively small. The main consideration for the
page-based approach is that a major part of a shared page may
contain data accessed exclusively by a single core, thus being
private and unnecessarily processed by the coherency mecha-
nism. In fact, it is reported that on average only 6% to 26% of
a shared page is accessed by more than one application, but
that accesses to shared data dominate [3]. Generally, we are
faced with a tradeoff between complexity and overhead of the
classification mechanism on one hand, and the effort needed
for maintaining coherence on the other hand. In our work we
select page-level granularity for private/shared tagging
to be able to efficiently implement the hardware and software
memory monitoring mechanisms and compare the results to
observations of related work.

Another question that determines how often the coherency
mechanism needs to be triggered is when a page is actually
shared. Let us assume a typical virtual memory system with
a page-based private/shared classification implemented
by storing private/shared bits in the PTEs and, conse-
quently, also within the TLB entries. Every write access will
consult the TLB to check the private/shared status of
the addressed data, which requires the L1 cache to be virtually
or physically tagged and physically indexed. From an OS point
of view, if two processes A and B access the same page
in read/write mode, the page is usually considered shared.
However, if A and B execute on the same core, there is no
need for checking coherency and the page could be considered
private from the perspective of the coherency mechanism
(cf. Fig. 1 (a)). Another issue is migration between cores. For
example, if a private page X was modified by a process A
on core 1, migrating A to core 2 renders X shared as X is
now accessed by a different core with separate caches (cf.
Fig. 1 (b)).

Generally, the definition of private and shared depends
on the tradeoff between the complexity and overhead of
classifying pages and the effort for maintaining coherence. For
instance, the problem of pages becoming shared on migration
of a process can be resolved by updating the PTEs of the pro-
cess during the migration. As refining the private/shared
classification can be done in many different ways, we empha-
size simplicity in this work and select a canonical definition
categorizing memory accesses as:

• Private access: refers to memory references to pages,
which are being requested by only one processing core.

• Shared access: refers to memory references to pages,
which have received requests from more than one pro-
cessing core.

Process A Process B
@

Core 1

Page X
[Private]

(a)

Process A
@

Core 1

Process A
@

Core 2

Page X
[Shared]

Migration

(b)

Figure 1: Private/shared classification of a page. Fig. (a):
Page X can be tagged private since processes A and B

execute on the same core. Fig. (b): On migration of process
A, its previously private page X could become shared.

IV. SYSTEM ARCHITECTURE

Our design of a run-time private/shared classification
mechanism consists of a hardware and a software part. The
hardware implementation extends the PMU and MMU of the
LEON3 softcore processor for counting accesses to private
and shared pages as well as for detecting and signaling of
initializations and re-classifications of page shared states to the
CPU. The software implementation consists of two interrupt
handlers in the Linux 2.6 kernel that initialize and re-classify
the shared status of new and existent PTEs, respectively.

A. Extending the LEON3 Design

Our extensions of the LEON3 quad-core architecture are
presented in Fig. 2. The default components of LEON3 are
an Integer Unit (IU), a split Level-1 instruction and data
cache (L1:I/D), and an MMU. We extend the MMU by the
private/shared page detection (PSPD) logic and add a
PMU for counting private/shared classification events.

Private/Shared Detection and Handling at the Hardware
Level: Using the spare upper 4 bits of a PTE (cf. Fig. 2)
we code the initialization status of a page (init bit), its
private/shared status (P/S bit), and which processing
core has initialized the page first (two “keeper” bits for
core 0 to core 3). With this information the PSPD logic
decides for every memory access whether page initialization,
re-classification, or page access counting needs to be triggered.
If the init bit is not set, the page was allocated by the OS
due to a TLB miss handled by the page fault handler and
its private/shared status has not been initialized yet. In
this case, the PSPD logic signals an initialization interrupt
(cf. 1 in Fig. 2) to the OS and program execution is halted.
The corresponding interrupt handler initializes tracking for this
PTE and sets the init bit to ’1’ before resuming the execution.

If the init bit is set, the PSPD logic checks the P/S bit next.
A set P/S bit indicates an access to a shared page and the
PSPD logic generates an shared access counting signal for
the PMU. If P/S bit is zero, i.e., the page is marked private,
the PSPD logic checks whether the ID of the interrupted core
is identical to the core ID in the requested PTE. If the IDs are
identical, the PSPD logic generates an private access counting
signal for the PMU. Otherwise a private page is going to be
accessed by an additional core and a re-classification of the
page is required. In this case the PSPD logic signals a private-
to-shared change interrupt 2 and the OS updates the P/S
bit of all PTEs pointing to the addressed physical page as
shared.

To avoid inaccuracies, the PSPD does not generate counting
signals for memory accesses in the OS kernel mode. This is
done by checking whether the 4-bit value of the Address Space
Identifier (ASI) of the current access equals 0xA [14].

Extending the PMU: The original PMU in Fig. 2 has been
extended by five new event counters that are connected to the
PSPD-logic (see Tab. I) [5]. The benefit of the PMU is that it
integrates into the standard Linux performance measurement
infrastructure seamlessly. All features of the perf system can
be used with the new event sources without modifying any
Linux kernel code.

Table I: New events implemented by the LEON3 PMU.

Event ID Number of
0x10 private accesses
0x11 shared accesses
0x12 total accesses
0x13 page classification initializations
0x14 private-to-shared page reclassifications

B. OS Integration

Fig. 3 shows how hardware and software memory man-
agement mechanisms work and interact. Assuming a page
being accessed for the first time, the TLB will not have yet
cached the according virtual-to-physical address translation
and returns a miss (cf. 1 in Fig. 3). This triggers a page
table walk that will not find an entry in the page table of the
process. The MMU then raises an exception causing the page
fault handler of the OS allocating a physical page and a new
PTE as well as clearing the PTE’s init bit 2 . The restarted
address translation process causes a TLB miss again but we
will find a valid PTE this time and cache the according address
translation in the TLB. The address translation is restarted
again, finding the desired memory address translation in the
TLB and activating the PSPD logic 3 .

Initialization Handler: If the PSPD logic detects that
a user space page has being accessed and not initialized
for private/shared classification yet, it raises a trap
condition invoking the OS initialization handler 4 . The inner
logic of the handler is shown in Fig. 4. The handler first
checks whether other processes are already using the according
physical page. To avoid traversing all PTEs, Linux’ reverse

IU

Core

L1:I/
D

TLB
PMU

PSPD

PMU

Init P/S Keeper PPN Others ET VPN Ctx. ID

D-TLB Entries

-31- -30- -29…28- -27…8- -7…2- -1…0-

PTE TAG

Virtual address latch

MMU registers

MMU-LogicPSPD – Logic

Init == 1
No

P/S == 0

Yes
No

Keeper !=
core ID

Yes

No

Yes

…

1

2

shared access

private access

user access &
not translation

Core

…

LEON3 quad-core
counter registers

control registers

- L1:I/D: Level 1
Instruction/ Data Caches.

- IU: Integer Unit
- PMU: Performance
Monitoring Unit

- VPN/ PPN: Virtual/
Physical Page Number.

- ET: Entry Type to indicate
valid PTEs.

- Others: Other field bits
used in MMU.

Figure 2: Private Shared Page Detection (PSPD) logic. Gray-colored elements extend the original LEON3 processor.

MMU OS

TLB hit ?

Page table
walk

Entry found ?
Page fault handler

Resolved ?

Kill the process

Do TLB
lookup

Update the
TLB

Translation

Initialization
handler

Private-to-shared
handler

PSPD-
Logic

YES

Sw
itc

h
to

sh
ar

ed
N

ot
in

iti
al

iz
ed

NO
NO

NO

Y
ES

YES

1

2

3

5

4

Figure 3: Flowchart of the detection mechanism.

mapping is used. In case no other process is using this physical
page, the page is marked private (P/S bit← 0) and its “keeper”
bits are set to the interrupted core ID. Otherwise the “keeper”
and P/S bits are copied to the new PTE. Should the “keeper”
bits be different from the interrupted core ID, i.e., the current
core is accessing a page managed by another core, the P/S
bits of all related PTEs are set to shared (P/S bit ← 1) and
the according cache lines in the TLBs are flushed using the
Selective TLB Flush mechanism of the SPARC architecture.
Finally, the “init” bit is set to done (init bit ← 1) and the
halted program is resumed.

Private-to-shared Handler: Whenever i) more than one
core wants to share the same physical page, ii) a process is
migrated to a different core, and iii) a child process is forked
onto a different core1, the PSPD logic detects during the first
access to the previously as private marked page that the
“keeper” bits are different from the current core ID. That
means that the current core is not the core that initialized
the page and consequently the page has to be re-classified
as shared. The PSPD logic interrupts the private-to-shared
handler 5 , which uses reverse mapping to set the correct
shared status in all related PTEs and to flush the according
TLB cache lines of all cores.

1All PTEs of the parent process are copied to the child process by fork().

Do reverse mapping

Copy the PTE’s Keeper bits
and P/S bits

Keeper ← my core id
P/S ← 0

End

Any other PTEs referencing to
the same physical page?

Keeper == my core id

Set in mine and all related PTEs:
P/S ← 1

NO

YES

YES

NO

Start

Figure 4: Inner logic of the PSPD initialization handler.

V. EVALUATION AND RESULTS

In this section we introduce the configuration of the ex-
perimental system and the experiment methodology, show
results on private/shared memory access classification,
and measure and discuss the computational overhead.

A. Evaluation Methodology

For our experiments we have selected a representative set
of programs from different application domains: sequential
applications from Mibench [15] and parallel applications from
ParaMibench [16], PARSEC [17], and SPLASH2 [18] bench-
mark suites. Tab. II summarizes our selection.

Table II: Benchmarks used for evaluation.

Benchmarks Applications
Mibench Blowfish-Dec./-Enc., FFT, JPEG-Dec/-Enc., Quicksort.

ParMibench Patricia.
PARSEC Blackscholes, FLuidaminate.

SPLASH2 Cholesky, FMM, Raytrace, Water-nsquared/-spatial.

The configuration of the LEON3 processor is presented in
Tab. III. As profiling applications on a real world system is
subject to small deviations due to random effects of hardware
components and OS scheduling as well as memory allocation
strategies, we have repeated each experiment 32 times.

Table III: System configuration of the LEON3 quad-core on
Xilinx ML605 board.

Parameters Configuration
Clock Frequency 50MHz

Floating Point Software
Memory 1GB DRAM
I/D-TLB split, 8 entries

L1:I & 4KB, 8KB - direct mapping
L1:D {16,32}-bytes/line, Snooping Protocol

Linux Kernel 2.6.36.4 patch from Gaisler
Compiler Pre-built Linux, toolchain from Gaisler

PMU 8 event counters

B. Private/Shared Classification

The classification results for sequential and parallel applica-
tions are shown in Fig. 5. The plots report for each benchmark
the percentage of accesses to private and shared pages w.r.t. the
overall number of accesses as well as the standard deviation
for 32 runs. Fig. 5 (a) summarizes the results for sequential
applications with a share of private accesses between 93% and
97%. On average, the detected private accesses amount for ap-
proximately 95% over all evaluated applications. Although we
have single threaded programs we observe 5% shared accesses.
This comes from the OS scheduler that is free to migrate
processes to any of the four available cores. On migration,
private pages become shared in our implementation. When
pinpointing each of these applications to a dedicated core
using the affinity feature of Linux we experience 100%
private accesses. Fig. 5 (b) presents the results for the parallel
applications. As expected, they show a higher fraction of
shared page accesses with 3% to 40%, where blackschole,
cholesky, and fmm show the most intensive exchange of
data between processes. On average, 83% of accesses are
private and 17% are shared.

When comparing our results to the work of Cuesta et al. [2],
we observe a notable discrepancy in the average number of
accesses to private pages for page-based private/shared
classification of parallel benchmarks (Cuesta et al.: 57%,
our work: 83%), which can be explained by the different
processor and cache architectures and a different selection of
benchmarks. Much closer to our results are the numbers of
Hardavellas et al. [3]. About 75% of memory accesses are
targeting private pages in their work. An important difference
is that Hardavellas et al. used fewer but much larger data base
benchmarks. Additionally, the authors have a slightly extended
private/shared classification scheme where private
pages of a migrated process may stay private.

C. Overhead

Based on our LEON3 implementation, we report on the
overhead induced by the private/shared handling. The

computational overhead splits mainly into additional kernel
time spent in two interrupt handlers and into a higher num-
ber of TLB misses due to re-classification of private pages.
Tab. IV reports for all benchmarks the time spent in user and
kernel code with and without the PSPD mechanism activated
(columns “Application Time” and “Kernel Time”) as well
as the relative increase of kernel time. Since in this work
we implemented the private/shared classification but
did not selectively control the coherency mechanism, our
expectation was that mainly the kernel time will increase.
This is confirmed by the numbers in the Tab. IV where
application times with and without PSPD differ insignificantly
while kernel times increase by 20% to 85% when enabling
PSPD. The last column of Tab. IV shows that the percentage
of additional TLB misses due to re-classification of private
pages as shared also stays rather low. An exception is the
patricia benchmark that spends 37% of its runtime kernel
mode, which increases to 45% using our PSPD logic.

Table IV: Overheads induced by private/shared
classification. Time is reported in seconds.

Application Time [s] Kernel Time [s] Kernel Time[%]
No With No With No With ∆ TLB

Sequential PSPD PSPD PSPD PSPD PSPD PSPD misses
Blowfish Dec. 7.04 7.00 0.23 0.23 3.16% 3.24% 1.13%
Blowfish Enc. 7.02 6.98 0.24 0.25 3.31% 3.42% 0.74%
FFT 7.93 7.88 0.04 0.05 0.50% 0.69% 0.03%
JPEG Enc. 2.94 2.93 0.15 0.19 4.85% 6.00% 1.33%
JPEG Dec. 1.00 1.09 0.17 0.21 13.39% 16.51% 2.05%
Quicksort 1.87 1.84 0.22 0.29 10.53% 13.52% 0.13%
Parallel
Blackscholes 2.85 2.82 0.09 0.12 3.06% 4.08% 1.57%
Cholesky 91.99 91.23 0.71 1.12 0.77% 1.21% 4.09%
Fluidanimate 41.07 40.32 1.96 3.72 4.55% 8.45% 2.29%
FMM 4.27 4.22 0.24 0.30 5.32% 6.64% 0.32%
Patricia 9.57 9.24 5.66 7.64 37.16% 45.27% 12.11%
Raytrace 406.75 413.27 0.79 1.48 0.19% 0.36% 0.12%
Water-nsquared 1.60 1.62 0.14 0.18 8.05% 10.00% 2.50%
Water-spatial 73.12 74.71 0.15 0.20 0.20% 0.27% 0.12%

Our overhead analysis shows that the overhead of a
simple page-based private/shared detection approach
strongly depends on the benchmark. While in the case of
the patricia benchmark the overhead is notable, for many
applications the time spent in user mode is dominant which
makes the overhead induced by PSPD insignificant.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented a run-time
private/shared classification of memory accesses
using an FPGA-based LEON3 multi-core processor and
a regular Linux 2.6 kernel. Experiments with benchmarks
from the Mibench, ParaMibench, PARSEC, and SPLASH2
application suites provide insights into the numbers and ratios
of private and shared page accesses. Compared to other,
simulation-based approaches our prototype is to the best of
our knowledge the first implementation of a real prototype
which enables us to i) provide page classification data with
much higher precision and ii) quantitatively evaluate the
induced overhead.

While our current implementation is limited to four cores
by taking advantage of the unused 4 bits available in the PTE,

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Blowfish Dec.

Blowfish Enc.

FFT
JPEG Enc.

JPEG Dec.

Quicksort

Average

A
cc

es
se

s

Private
Shared

(a) Sequential applications

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Blackscholes

Cholesky

Fluidanimate

FM
M

Patricia

Raytrace

W
ater-nsquared

W
ater-spatial

Average

A
cc

es
se

s

Private
Shared

(b) Parallel applications

Figure 5: Results of the private/shared classification by our PSPD platform for sequential and parallel applications.

a larger number of cores can be supported with low overhead
by enlarging PTEs with additional bits.

Besides possible optimizations with respect to the re-
classification of pages as private, future work will mainly con-
centrate on levering our runtime page classification approach
for improving multi-core architectures. For example, switching
off unnecessary cache coherency mechanism activations can
help save substantial amounts of energy, reduce the load on
memory busses, and possibly speed up applications on multi-
core processors. Our mechanism could also be used in systems
with a small conventional cache for shared blocks and a
larger cache without a coherency mechanism for private data
blocks. Moreover, private/shared detection may offer an
opportunity for the optimization and simplification of synonym
detection mechanisms with the prospect of allowing virtual
cache designs become less complex.

VII. ACKNOWLEDGEMENT

This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Centre
“On-The-Fly Computing” (SFB 901).

REFERENCES

[1] D. Kim, J. Ahn, J. Kim, and J. Huh, “Subspace snooping: Filtering
snoops with operating system support,” in Proceedings of the 19th
International Conference on Parallel Architectures and Compilation
Techniques (PACT). ACM, 2010, pp. 111–122.

[2] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato, “Increas-
ing the effectiveness of directory caches by deactivating coherence for
private memory blocks,” in Proceedings of the 38th Annual International
Symposium on Computer Architecture (ISCA). ACM, 2011, pp. 93–104.

[3] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reac-
tive nuca: Near-optimal block placement and replication in distributed
caches,” in Proceedings of the 36th Annual International Symposium on
Computer Architecture (ISCA). ACM, 2009, pp. 184–195.

[4] A. Esteve, A. Ros, M. E. Gmez, A. Robles, and J. Duato, “Efficient
tlb-based detection of private pages in chip multiprocessors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 3, pp.
748–761, 2016.

[5] N. Ho, P. Kaufmann, and M. Platzner, “A hardware/software infras-
tructure for performance monitoring on leon3 multicore platforms,” in
2014 24th International Conference on Field Programmable Logic and
Applications (FPL), 2014, pp. 1–4.

[6] J. J. Valls, A. Ros, J. Sahuquillo, and M. E. Gomez, “Ps-cache: an
energy-efficient cache design for chip multiprocessors,” The Journal of
Supercomputing, vol. 71, no. 1, pp. 67–86, 2015.

[7] Y. Li, R. Melhem, and A. K. Jones, “A practical data classification
framework for scalable and high performance chip-multiprocessors,”
IEEE Transactions on Computers, vol. 63, no. 12, pp. 2905–2918, 2014.

[8] J. M. Cebrin, A. Ros, R. Fernndez-Pascual, and M. E. Acacio, “Early
experiences with separate caches for private and shared data,” in e-
Science (e-Science), 2015 IEEE 11th International Conference on, 2015,
pp. 572–579.

[9] Y. Li, R. Melhem, and A. K. Jones, “Ps-tlb: Leveraging page classifi-
cation information for fast, scalable and efficient translation for future
cmps,” ACM Trans. Archit. Code Optim., vol. 9, no. 4, pp. 28:1–28:21,
Jan. 2013.

[10] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,” in
Proceedings of the 21st International Conference on Parallel Architec-
tures and Compilation Techniques (PACT). ACM, 2012, pp. 241–252.

[11] A. Esteve, A. Ros, A. Robles, M. E. Gómez, and J. Duato, “Tokentlb:
A token-based page classification approach,” in Proceedings of the 2016
International Conference on Supercomputing (ICS). ACM, 2016, pp.
26:1–26:13.

[12] H. Hossain, S. Dwarkadas, and M. C. Huang, “Pops: Coherence pro-
tocol optimization for both private and shared data,” in 2011 Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), Oct 2011, pp. 45–55.

[13] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian,
“Swel: Hardware cache coherence protocols to map shared data on-
toshared caches,” in Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques (PACT). ACM,
2010, pp. 465–476.

[14] Aeroflex Gaisler, Grlib. [Online]. Available: http://www.gaisler.com/
products/grlib/grlib.pdf

[15] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in IEEE 4th Annual Workshop on Workload Charac-
terization, 2001, pp. 3–14.

[16] S. M. Z. Iqbal, Y. Liang, and H. Grahn, “Parmibench - an open-source
benchmark for embedded multiprocessor systems,” IEEE Computer
Architecture Letters, vol. 9, no. 2, pp. 45–48, Jul. 2010.

[17] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT). ACM, 2008, pp. 72–81.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-
2 programs: Characterization and methodological considerations,” in
Proceedings of the 22Nd Annual International Symposium on Computer
Architecture (ISCA). ACM, 1995, pp. 24–36.

