Microarchitectural Optimization by Means of
Reconfigurable and Evolvable Cache Mappings

authors omitted for blind review

Abstract—Physical limits are pushing chip manufacturer
towards multi- and many-core architectures to maintain the
progress of computing power. This trend has also emphasized re-
configurable computing, which enables for even higher paralleliza-
tion degrees. Reconfigurable computing is often used together
with a conventional processor to accelerate highly specific appli-
cations. However, exploiting dynamically reconfigurable systems
for microarchitectural optimization is a novel research area. This
paper presents for the first time an FPGA-based implementation
of a processor that can reconfigure and adapt its own memory-to-
cache address mapping function at runtime by means of dynamic
reconfiguration and nature-inspired optimization. In experiments
we can achieve up to 7.8% better execution times compared to
a processor with a conventional cache mapping function.

I. INTRODUCTION

When looking back at the history of computer systems,
the performance of central processing units (CPU) has grown
twice as fast as the performance of DRAM main memories [1]
for a long time, creating a gap between these tightly coupled
elements. Exploiting the principles of temporal and spatial
locality in instruction and data accesses, computer architects
have introduced memory hierarchies placing several levels of
rather small SRAM-based memories, so-called caches, between
a CPU and its main memory. The closer such a cache is placed
to the processor’s register in the memory hierarchy, the faster
and smaller it will be compared to main memory. In case of
a cache hit in the first level of caches, a processor can fetch
instruction and load/store data vectors typically without any
noticeable delay. However, if the desired memory vector is not
in the cache, it has to be fetched from lower level caches or
main memory stalling the processor for tens or even hundreds
of clock cycles. Thus, efficient caches are fundamental to the
performance of modern processors.

Research on improved caches is continuing to date, because
caches consume a significant amount of a CPU die contributing
not only to the performance of a CPU but also to its costs
and power consumption. Architectural aspects such as size,
associativity, replacement strategies, and block sizes have
been investigated with respect to the total costs, area, power
consumption, and performance [2], [3]. Particularly in the area
of embedded systems with a small and often known-in-advance
set of applications, highly tailored memory and cache systems
are very promising. Here, self-tuned reconfigurable caches have
been investigated in [4] and [5].

Architectural cache tuning is not the only way of improving,
tailoring and adapting a cache. Non-architectural properties such
as the replacement strategies and custom memory-to-cache
address mapping functions have also received attention. While
replacement strategies have been investigated exhaustively,
mapping function modifications have been analyzed only by

few papers. Conventionally, a modulo function is applied to the
main memory address to compute the corresponding number
(index) of a cache line within the cache. This scheme is popular
since it has no temporal and resource overhead in case the
number of cache lines is a power of two. However, one can
imagine having multiple memory-to-cache address mapping
functions tailored to different applications resulting in better
execution times. The limited research on customized memory-
to-cache address mapping functions presumably is due to the
more complicated simulator set up and prolonged simulation
times. Moreover, to the best of our knowledge no such system
has been build yet.

The novel contribution of this paper is the first FPGA
implementation of a processor architecture with an evolvable
cache structure. We detail the architecture which is able to
execute programs using custom cache mapping functions and
show how to evolve those cache-mapping functions. The
resulting prototype allows for improving the computation time
and, in perspective, also the energy consumption, and gives the
operation system advanced control over the cache including,
for instance, cache partitioning.

In the remainder of the paper, we first review related work
in Section II and then describe the concept of a reconfigurable
cache mapping as well as the integration into the LEON3
platform in Section III. In Section IV we present the bio-
inspired optimization algorithm used to evolved the cache
mappings. In Section V, we present experimental results using
MiBench workloads. Finally, Section VI concludes the paper
and outlines future work.

II. RELATED WORK

The conventional mapping of memory addresses to cache
lines takes a subset of address bits and uses them for indexing
a cache line, typically the least significant % bits of the address
besides byte and block offsets. If n is the number of cache lines,
k = logy n bits are required to index the cache lines. Recently,
the research community started to investigate novel mapping
functions. Three approaches to map address to index bits have
been evaluated so far: the permutation of index bits [6], XOR
functions [7] and arbitrary Boolean circuits [8].

Regarding the first approach, Givargis et al. [6] have
presented a heuristic that finds for a specific application a
subset and permutation of the memory address bits used for
selecting a cache line. The heuristic is guided by the miss rate.
While the approach has shown promising miss rate reductions,
the question of how to load/replace an application-specific
mapping function during a context switch was not discussed.

Vandierendonck et al. take a step further introducing a layer
of XOR gates computing the index bits [7]. An algorithm

evolves the connection pattern between the memory address
bits and inputs of the XOR gates. Using a 4KB cache and
the PowerStone benchmarks, the authors have evolved and
cross-validated cache mappings and shown that their mappings
produce almost always better miss rates than the conventional

mapping.

Lately, Kaufmann et al. [9], [10], [11], [12], [13] have
introduced another approach of reconfigurable cache mappings,
called EvoCaches. While their approach is conceptually similar
to the related works, it strongly differs in the way they develop
and implement the cache mapping functions. The mapping
functions are modeled as generic Boolean circuits that are
evolved by a genetic algorithm. For example, in [9] the authors
have investigated a fully fledged cache similar to modern ARM
architectures with a split L1 cache as well as a uniform L2
cache. The have evolved for each of the caches a separate
mapping function and used the total execution time rather than
the miss rate to guide the search. The cross validation results
have shown improvements of up to 14% in execution time, up
to 16% in energy consumption and up to 40% in miss rate
reduction.

Focusing on adaptable systems and on the evolution of
novel cache mappings, this paper presents an FPGA implemen-
tation of a processor with run-time self-reconfigurable cache
mappings. In order to realize this idea, we have selected the
LEONS3 processor [14] instantiated on a Virtex 6 FPGA and
implemented all caches as well as a measurement infrastructure
allowing us to finely monitor the execution times and cache
performances in the reconfigurable fabric.

III. RECONFIGURABLE CACHE MAPPING
A. The EvoCache Concept

Inspired by earlier work on EvoCache, we take this concept
further and present a multi-core architecture with distributed
caches that allows us to deploy and evaluate the EvoCache idea
directly on a reconfigurable hardware platform. An evolvable
cache consists of small reconfigurable fabrics woven into
the address paths of caches and an optimization algorithm,
searching for good cache mappings and reconfiguring the
fabrics. Figure 1 presents our architecture, in which the
gray parts denote partial reconfigurable fabrics dedicated
for reconfigurable cache mappings. For each CPU we need
redundant reconfigurable fabrics that snoop the inter-CPU bus
and help detecting write back and write through collisions. In
case of virtually addressed caches, our architecture needs to be
extended by an additional collision unit. These units are not
presented in Figure 1.

We encode candidate solutions for memory-to-cache address
mapping functions using the Cartesian Genetic Programming
model (CGP) [15]. CGP is well suited to represent combina-
tional logic circuits as it encodes a two dimensional grid of
functional nodes connected by feed forward wires. Our CGP
implementation is shown on the right-hand side of Figure 2.
There are many possibly mappings of CGP encoded circuits
to FPGA logic. In this work, we map CGP nodes to native
look-up tables (LUT) of an FPGA and fix the routing between
the nodes in the CGP model as well as on the FPGA to a
butterfly network. To give the optimization algorithm more
freedom for routing, LUTs in the first column may connect to

IC Controller DC Controller < snooping
'y Y ry address
‘““5‘“““}““‘. v I v ¥ / mux o\
| 1CMO | 1cM1 |i| ITLB | | DTLB | DCMO | DCM1 | T T
i Y T I
| DCMS0 | DCMS1 |
A i L
—»{ IC Mem AHB Master DC Mem [¢— AHB Slave

Fig. 1: The system with reconfigurable cache mapping
supports. Abbreviations: IC/DC = instruction/data cache;
{I/D}M{0/1/S0/S1} = instruction / data / cache mapping

function {0/1/snooping 0/snooping 1}

any of the address bits. The input routing configuration is also
part of the evolutionary search process. The final architecture
is therefore quickly reconfigurable, as only few FPGA LUT
contents need to be changed.

In order to make EvoCache work with our architecture,
we have allocated two partially reconfigurable functions for
each cache mapping. As showed also in Figure 1, instruction
cache structure has additional two mappings, named ICMO0/1
(Instruction Cache Mapping). Similarly, data cache has two
mappings, DCMO/1 (Data Cache Mapping). This way, while one
mapping is operational the other mapping can be reconfigured
without interfering with the system. Once reconfiguration
of a mapping is done, the system has to flush the cache
before switching to the new mapping. As we are targeting
multi-core systems and the LEON3 architecture realizes cache
coherence by a snooping protocol, we have also introduced
reconfigurable functions, DCMS0/1 (Data Cache Mapping for
snooping operation) shown in Figure 1, for listening to the inter-
CPU bus and detecting writes for invalidating the corresponding
cache blocks in the own caches. Because the LEON3 processor
does not support self-modifying code, snooping is required
only for the data cache.

B. The Cache Mapping Design

Pivotal for our implementation of the reconfigurable cache
mapping is the way reconfigurability is supported on Xilinx
FPGAs. There are three approaches relevant for our application:
partial reconfiguration, virtual reconfiguration and reconfigura-
tion via shift registers.

Partial reconfiguration is the native reconfiguration approach
supported by the Xilinx tools. A partial bitstream encodes
the complete information of an FPGA region including the
configuration of the switch boxes and LUTs. The bitstream is
generated by the Xilinx tools and has a non-disclosed format.
While others have shown that using reverse engineering parts
of the bitstream can be decoded and, subsequently, be modified
by custom tools, we have decided to avoid this reconfiguration
type as the formatting of a partial bitstream is highly depended
on the actual device and the place of the reconfigurable region
on the FPGA.

Virtual reconfiguration denotes the implementation of the
multitude of different functions in custom logic and clamping
the function selection multiplexer to a memory bus. For CGP,

cf_din
clk —
e bits
cf addr s
To/From | == :
) srlc_r
Drog en _
rst_n FSM srlc ce anl-s;(sof
d |
prog_done =,
nodes
32 bits
X [SRLC32E
e T(75) T
i stle_t(78) T,]
A[0:1]
X
STLC_CE -
— CLK

f fi fi =0
ﬁ/ f fi !
T T T
1 1 1
1 1 1
1 1
1 1 1
1 1 1
1 1 1
1 1
1 1
1 1 1
! | [
fi fi fi =13

Fig. 2: The design of CGP-based cache mapping by using Xilinx’s SRLC32E primitives as CGP blocks

this would mean implementing custom logic LUTs, each with a
memory bus interface, in a two-dimensional grid. While virtual
reconfiguration is the reconfiguration approach that leads to the
smallest reconfiguration times, it is also very costly in terms
of area overhead.

The third approach, and the one we have chosen, is
reconfiguration via shift registers using the Xilinxs SRLC32E
primitive that allows for specifying the content of some LUTS,
which are then shifted in in a serial manner. While this approach
is slower than virtual reconfiguration, it allows us to manipulate
the native FPGA LUTs without using the Xilinx tools. The
drawback is that switch boxes cannot be modified this way.
Thus, routing has to be realized either by additional intermediate
LUTs that are relaying signals according to the encoding of the
solution or by fixing the routing and letting the evolutionary
search process implicitly exploit it. Fixed routing works very
well, especially when using the butterfly routing that easily
allows for even distant address bits to be input to a single CGP
functional block. The butterfly routing architecture is shown on
the right-hand side of Figure 2. The size of our realized CGP
architecture is 16 rows by 5 columns. Each of the functional
blocks is a native Xilinx LUT. While the native Xilinx LUTs
on a Virtex 6 FPGA have 5 inputs, only the first two inputs are
used for CGP describing our address mapping function. We
plan to use the full width of the native Xilinx LUTs in future
work. The whole CGP mapping function has 32 primary inputs
and 16 primary outputs. The inputs can be connected to any
of the inputs of LUTs in the first column.

Figure 2, top of the left-hand side, details the CGP
reconfiguration mechanism. The mechanism consists of an
80-word buffer with LUT contents and an FSM, shifting
this buffer into the native Xilinx LUTSs, which are chained.
The reconfiguration controller (RC), which is not pictured in
Figure 2, informs the FSM to start reconfiguration by setting
the programming enable signal prog_en. The FSM drives the
chip select enable signal srlc_ce connected to all SRLC32E-
configurable CGP LUTs and starts shifting in the buffer. At the
end, the FSM acknowledges to the RC that the reconfiguration
process was completed by pulsing the prog_done signal.

C. The Integration the into LEON3 Architecture

Figure 3 shows the overall integration into the LEON3
architecture. The architecture comprises a reconfiguration
controller (RC), reconfigurable regions for each of the cache
mappings and one cache hash function controller, denoted as
Cache-HF Controller. All extensions to the standard LEON3
platform are colored in gray in Figure 3.

Leon3 IU
DC Controller sni?]?jzl:g \
Cache-HF
@ Controller + RC|
— — Y
DCMSOlDCMSl |
e DMA
Interface
AHB AHB AHB
Master DC Mem Slave Master
AMBA Bus

Mem Controller

RC: Reconfiguration Controller
Cache-HF: Cache Hash Function

IU: Integer Unit
DC: Data Cache

Fig. 3: The Integration into LEON3 SoC. IC mapping is not
shown.

The RC works in cooperation with a DMA controller.
This speeds up the transfer times of bitstreams located in
the main memory to the reconfigurable regions of an FPGA.
RC provides four main registers: the reconfiguration control
register (recon_ctrl), that starts and stops the read and write
transactions between the main memory and the reconfiguration
area, the reconfiguration data length register (recon_len), in-
dicating the size of the transferred data block, the reconfigurable

data address register (recon_addr), specifying the physical
memory address of the bitstream, and the reconfiguration
status register (recon_stat), indicating the status of the
reconfiguration process. In order to access registers of the RC,
the Address Space Identifier (ASI) 1da/sta instructions of
the SPARC architecture are used [14]. These instructions are
available in system mode only. Especially, the AST = 0x02 is
reserved for system control registers and is used for interfacing
the presented controllers. Since the AST = 0x02 is reserved
for system control registers and has an unused address range
from 0x10 to 0x1C, this region is picked for interfacing with
the RC.

Figure 4 (a) demonstrates the operation of the RC. In state
RO, whenever there is the programming/reconfiguration request
prog_req = 1 raised in the recon_ctrl register by CPU,
the reconfiguration process starts by a transition into R1. Once
the reconfiguration is done, which is signaled by prog_done =
1, the RC is signaling the end of reconfiguration by pulsing
a “1” on the rc_done line by transiting to R2 for a single
cycle and then back to RO. In state R2, the RC clears the
prog_req bit in the recon_ctrl register and updates the
recon_stat register.

The RC operates interleaved with the Cache-HF Controller,
which in turn handles the two key cache mapping’s operations:
flushing cache memory once the reconfiguration process is
done, and handling the cache mapping switches. Figure 4 (b)
demonstrates the FSM of the Cache-HF Controller. Starting
with the rc_done signal that is generated by RC to indicate that
the reconfiguration process of the currently inactive mapping
functions is finished, the Cache-HF Controller transits from
HO to H1 where it flushes the cache. Once the cache is empty,
signaled by flush_done, the Cache-HF controller moves to
H?2 switching currently inactive mapping functions active and
vice versa. The switching mechanism finishes within one clock
cycle, ensuring that the snooping protocol operations are not
affected even in a multicore configuration.

IV. GENETIC OPTIMIZATION

Based on the hardware implementation presented above, we
are now explaining how to exploit the idea of natural selection
in order to build better CPU caches. The strategy is to deploy
an offline training phase by running an evolutionary algorithm
finding reconfigurable cache mappings for an application and
some application training input data vectors. In the subsequent
testing phase, we validate the evolved mapping to see if the
improvement generalizes for unknown data vectors and how
the evolved mappings compare to the modulo cache mapping
function.

Algorithm 1 shows our training algorithm for a set A of
n applications. Each application a; has m = 4 application
training input data vectors, stored in I;. For each application
a; the algorithm starts a loop where it initializes the first
mapping function either by the conventional modulo mapping
or randomly (line 2). The selection of these two initialization
vectors is motivated by the observation in [9], where better
results could be achieved by randomly initializing the initial
solution. After evaluating the first solution (lines 3 and 4),
the algorithm evolves 1000 iterations where in each iteration
(lines 5 to 11) four offspring solutions are created (lines 6 to

recon_ctrl.prog_req = ‘1’

RO
rc_done
= 3 0 b

rst_n

prog_done = ‘1’

R2
rc_done
=

(a) The simplified RC’s FSM. rc_done = 1 indicates the
reconfiguration process done.

rc_done = ‘1’

flush_done = ‘0’

flush_done = ‘1’

switch_done = ‘1’

switch_done = ‘0’

(b) The Cache-HF Controller’s FSM. f = 1 and sw = 1 indicate
flushing and switching processes happening.

Fig. 4: The FSM of RC and Cache-HF Controller’s operations.

9) by mutating (modifying four bits) the parent solution (line
7). The offspring solutions are evaluated (lines 8 and 9) and
the best offspring solution becomes the new parent solution
(lines 10 and 11) except for the case that all offspring solutions
are worse than the parent solution. Finally, the output of the
training algorithm is the set F' : {fo, ..., fn—1} containing the
optimized cache mappings for all applications.

The functional quality of a candidate solution is evaluated
(lines 3 and 4 as well as 8 and 9) by a LEON3 processor on an
FPGA. For this, the cache mapping of a candidate solution is
configured and the application is executed on four application
input training vectors in ;.

V. EXPERIMENTAL RESULTS

We have synthesized the LEON3 system to a Xilinx ML605
Virtex-6 board. Table I shows the parameterization of the
LEON3 system. Both level one caches are 2-way set associative
and have a size of 8 kB. With 31 address bits and 32 bytes in
an instruction cache block as well as 16 bytes in a data cache
block, address bits [30:5] and [30:4] are inputs to instruction
as well as data cache mapping functions, respectively. These
address bits are also saved as tag bits to detect collisions. Seven
and eight outputs bits from the cache mapping functions are
used to index cache lines in the instruction as well as in the
data cache, respectively. An example is shown in Figure 5.

We have selected four applications from the Mibench

Algorithm 1: The Training Algorithm

Input: A : {ag,...,an—_1} - n applications
Input: 7 : {Iy,....,I,,_1} - n input data sets, |I;| =m
Input: finit: frmod OF frand - the first mapping
Output: F': {fo,..., fn_1} - n optimized cache
mappings
for each a; in A do
fparent < .finit
chf_recon(finit)
Tparent < exec(a;, I;)
for each generations in 1000 do
for each child_j in 4 do
fchild_j — mutate(fparent)
chf_recon(fenitd_;)
Tenita_j < exec(a;, I;)

DT CHE 7 I - ST S

10 TPGTGM A min(TpaT‘enta Tchild_(),
11 fparent <— update the best

s Tenita_s)

12 L fz <~ fparent

TABLE I: LEON3 platform and system configuration

| System Configurations | Description |

Clock Frequency 75Mhz
Integer Unit Yes
Floating Point Software

Instruction Cache 2-way associative,
8KB, 32bytes/line, LRU

Data Cache 2-way associative,
8KB, 16bytes/line, LRU
Memory 1GB DRAM

b e EEIGIE o
T EEEEE o =)
'

>

Cache Index:
[MSBLSB]

Address:
[MSBLSB]

e ([[(7] (=) (5] o,
Fig. 5: An example mapping of address bits to CGP inputs for

a data cache. The mapping connects A4 — 10, A5 — 12, and
so on, which allows for initializing a modulo mapping.

benchmark: SHA, QSORT, DIJKSTRA and FFT. Four input
data vectors have been created randomly. To simplify the
experiment evaluation, we have executed the experiments
without an operating system to avoid context switches. For
each application, we have started the optimization run from
a randomly initialized solution and from the modulo cache
mapping function. Also, we have tried all possible optimization
configurations, i.e., optimizing only the instruction cache, only
the data cache and both cache mapping functions at the same
time. Table II summarizes those configurations.

TABLE II: Different configurations in the training phase

| Training configurations |
L1:1—Mod.,D — Opt.

Description ‘

IC mapping is modulo,
DC mapping is optimized
DC mapping is modulo
IC mapping is optimized

L1:D— Mod.,I — Opt.

L1:1,D — Opt. Both IC, DC are optimized
Mibench Applications: SHA, QSORT,
n=4 DIJKSTRA, FFT

The number of input For each application, the
data m =4 input data is generated

randomly

The developments of the execution times relative to a
conventional cache are shown in Figure 6 for all benchmarks
and both initialization methods. In the first line (Figure 6 (a))
the results for the SHA benchmark are presented. There, when
starting from a modulo cache mapping and optimizing only the
data cache mapping, the evolution achieves 7.8% improvement
in execution time. An improvement of 2.7% is possible if
starting from a modulo cache mapping function and optimizing
both cache mappings. If the training algorithm initializes the
first mapping randomly (Figure 6 (b)), only when optimizing
both cache mapping an improvement of about 2.7% can be
achieved. In Figure 6 (c), the FFT training results are shown.
Improvements of about 1.9% for L1:I and 1.8% for L1:ILLD
are possible, if starting from modulo mappings. However, no
improvements can be observed when starting from a modulo
cache mapping function (Figure 6 (d)).

While the execution time have been improved for SHA
and FFT during the training experiments, no such cache
mappings have been found for QSORT and DIJKSTRA

(Figure 6 (e), (f), (2), (h)).

Next, we test the applications by executing them using
the evolved cache mappings on input data vectors that have
not being used during the training. As shown in Table III,
there are 7.9% and 2.4% improvements for SHA, optimizing
L1: D and both L1 : I, D mappings if the first mapping is
started from modulo, and we see only 2.5% improvement in
case of optimizing both L1 : I, D mapping if the mapping is
initialized randomly. There are 1.9% and 1.8% improvements
for optimizing FFT if the first mapping is initialized with
modulo only.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented for the first time an
implementation of a system with dynamically reconfigurable
cache mapping functions and used this system to evolve
optimized cache mappings as well as test their generalization
behavior. We have found that for the SHA and FFT benchmarks
there are better cache mappings rather than the traditional
modulo-based cache mapping function, able to speed up the
execution time by 7.9% and 1.9%, respectively. We will extend
our work to a multi-core scenario and cover more benchmarks.
Furthermore, our reconfiguration and measurement framework
is suitable for further investigations on optimization of caches

Speedup
2
Speedup

02 | 4

o 200 400 600 800 1000 o 200 400 600 800 1000
Generations Generations
L1:D-Mod.I-Opt. =----- L1:1,D-Opt. <-eeeeee L1:1,D-Mod. L1:1-Mod,D-Opt. L1:D-Mod. I-Opt. =------- L1:1,D-Opt. -ooveeee L1:1,0-Mod.

L1:1-Mod,D-Opt.

(a) SHA - CGP is initialized with modulo (b) SHA - CGP is initialized randomly

1.02 ' ' ' '

1018 - i H g

1.016 [4

1.014 [4

1012 [4
o8 4

Speedup
Speedup

1.008 [4
06 | 4

1.006 4

1.004 [4

1.002 [4

02 | 4

0.998
o 200 400 600 800 1000 o 200 400 600 800 1000

Generations Generations
L1:D-Mod.1-Opt. =----= L1:,D-Opt -ovevev L1:1,D-Mod. L1:1-Mod.,D-Opt. L1:D-Mod. I-Opt. =------- L1:,D-Opt -evvvee L1:1,0-Mod.

L1:1-Mod.,D-Opt.

(c) FFT - CGP is initialized with modulo (d) FFT - CGP is initialized randomly

1.0026 ———————= ! ! ! '

1.002 [4

1.0015 [4

1.001 [4

Speedup
Speedup

1.0005 4

04 | 4

oz 4

0.9995
o 200 400 600 800 1000 o 200 400 600 800 1000

Generations Generations
L1:D-Mod. -Opt. =------- L1:1,D-Opt. «-oveeee L1:1,0-Mod.

L1:1-Mod.,D-Opt.

(e) QSORT - CGP is initialized with modulo (f) QSORT - CGP is initialized randomly

L1:D-Mod. 1-Opt. =------- L1:,D-Opt. woovvee L1:1,D0-Mod. L1:1-Mod.,D-Opt.

1.008

1.007 [4

1.006 [4

1.005 [4

1.004 4

Speedup
Speedup

1.003 [4

1.002 [4
1.001 [4 4
1
02 | 4
0.999
o 200 400 600 800 1000 o 200 400 600 800 1000
Generations Generations
L1:1-Mod.,D-Opt. L1:D-Mod. 1-Opt. === L1:4,D-Opt. «-eeeeen L1:1,0-Mod. L1:1-Mod.,D-Opt. L1:D-Mod. I-Opt. ------- L1:1,D-Opt. <-oeeee L1:1,0-Mod.

(g) DIJKSTRA - CGP is initialized with modulo (h) DIJKSTRA - CGP is initialized randomly

Fig. 6: The result of training phase; L1 : I, D — Mod.: IC and DC mapping are modulos; The speedup is calculated by
normalized to execution time of L1 : I, D — Mod. case.

TABLE III: Performance improvement (in %) achieved in the

testing phase.

CGP initialized with a modulo mapping
L1:D-Mod, | L1:I-Mod., | LI:I,
L1:I-Opt. L1:D-Opt. | D-Opt.
QSORT 0.06 0.02 0.014
SHA 0.00 7.90 2.40
FFT 1.90 0.01 1.88
DIJKSTRA 0.00 0.64 0.00
CGP initized randomly
L1:D-Mod, | L1:I-Mod., L1:1,
L1:I-Opt. L1:D-Opt. | D-Opt.
QSORT -19.91 -0.27 -5.66
SHA -35.37 0.00 2.53
FFT -48.67 -12.11 -32.39
DIJKSTRA -1.46 -10.12 -6.39

and memory interfaces, which we are planning to do in the
future.

[1]

[2]

[3]

[5]

[6]

[7]

[8]
[9]

(10]

[11]

[12]

[13]

REFERENCES

D. A. P. John L. Hennessy, Computer Architecture A Quantitative
Approach. Elsevier, 2012.

D. Albonesi, “Selective cache ways: On-demand cache resource al-
location,” in Proceedings. 32nd Annual International Symposium on
Microarchitecture (Micro). 1EEE, 1999, pp. 248-259.

L. Li, I. Kadayif, Y.-F. Tsai, N. Vijaykrishnan, M. Kandemir, M. Irwin,
and A. Sivasubramaniam, “Leakage energy management in cache

hierarchies,” in Proceedings on Intl. Conf. on Parallel Architectures
and Compilation Techniques (PACT). IEEE, 2002, pp. 131-140.

A. Gordon-Ross and F. Vahid, “A Self-Tuning Configurable Cache,” in
Design and Automation (DAC). 1EEE, 2007, pp. 234-237.

C. Zhang, F. Vahid, and R. Lysecky, “A self-tuning cache architecture
for embedded systems,” ACM Trans. Embed. Comput. Syst. (TECS),
vol. 3, no. 2, pp. 407425, May 2004.

T. Givargis, “Improved indexing for cache miss reduction in embedded
systems,” in Proceedings Design Automation Conference (DAC). 1EEE,
2003, pp. 875-830.

H. Vandierendonck, P. Manet, and J. Legat, “Application-specific
reconfigurable xor-indexing to eliminate cache conflict misses,” in
Proceedings Design, Automation and Test in Europe (DATE). 1EEE,
2006, pp. 1-6.

Details omitted due to double-blind reviewing.

P. Kaufmann, C. Plessl, and M. Platzner, “EvoCaches: Application-
specific Adaptation of Cache Mappings.” IEEE CS, 2009, pp. 11-18.

P. Kaufmann and M. Platzner, “Multi-objective Intrinsic Evolution
of Embedded Systems,” in Organic Computing — A Paradigm Shift
for Complex Systems, ser. Autonomic Systems, C. Miiller-Schloer,
H. Schmeck, and T. Ungerer, Eds. Springer Basel, 2011, vol. 1, pp. 193—
206. [Online]. Available: http://dx.doi.org/10.1007/978-3-0348-0130-0_
12

L. Sekanina, J. A. Walker, P. Kaufmann, C. Plessl, and M. Platzner,
“Evolution of Electronic Circuits,” in Cartesian Genetic Programming, ser.
Natural Computing Series. Springer Berlin Heidelberg, 2011, pp. 125-
179. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-17310-3_5

P. Kaufmann, Adapting Hardware Systems by Means of Multi-Objective
Evolution. Berlin: Logos Verlag, 2013. [Online]. Available: http:
/Iwww.logos-verlag.de/cgi-bin/engbuchmid?isbn=3530&Ing=deu&id=

——, “Multikriterielle Evolution adaptiver eingebetteter Systeme,”
Ausgezeichnete Informatikdissertationen, GI-Edition - Lecture Notes
in Informatics (LNI), Series of German Informatics Society, Springer,
vol. D-14, pp. 71-80, 2014.

[14]

[15]

Aeroflex Gaisler, “Grlib.” [Online]. Available: http://www.gaisler.com/
products/grlib/grlib.pdf

J. Miller and P. Thomson, “Cartesian Genetic Programming,” in
Proceedings of the 3rd European Conference on Genetic Programming
(EuroGP). Springer LNCS, 2000, pp. 121-132.

http://dx.doi.org/10.1007/978-3-0348-0130-0_12
http://dx.doi.org/10.1007/978-3-0348-0130-0_12
http://dx.doi.org/10.1007/978-3-642-17310-3_5
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3530&lng=deu&id=
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3530&lng=deu&id=
http://www.gaisler.com/products/grlib/grlib.pdf
http://www.gaisler.com/products/grlib/grlib.pdf

	Introduction
	Related Work
	Reconfigurable Cache Mapping
	The EvoCache Concept
	The Cache Mapping Design
	The Integration the into LEON3 Architecture

	Genetic Optimization
	Experimental Results
	Conclusions and Future Work
	References

