
Investigating Evolvable Hardware Classification for
the BioSleeve Electromyographic Interface

Kyrre Glette
Department of Informatics

University of Oslo

Oslo, Norway

Email: kyrrehg@ifi.uio.no

Paul Kaufmann
Faculty of EE and CS

University of Kassel

Kassel, Germany

Email: paul.kaufmann@gmail.com

Christopher Assad, Michael T. Wolf
Jet Propulsion Laboratory

California Insitute of Technology

Pasadena, CA, USA

Email: {chris.assad,wolf}@jpl.nasa.gov

Abstract—We investigate the applicability of an evolvable
hardware classifier architecture for electromyography (EMG)
data from the BioSleeve wearable human-machine interface, with
the goal of having embedded training and classification. We
investigate classification accuracy for datasets with 17 and 11
gestures and compare to results of Support Vector Machines
(SVM) and Random Forest classifiers. Classification accuracies
are 91.5% for 17 gestures and 94.4% for 11 gestures. Initial
results for a field programmable array (FPGA) implementation
of the classifier architecture are reported, showing that the
classifier architecture fits in a Xilinx XC6SLX45 FPGA. We
also investigate a bagging-inspired approach for training the
individual components of the classifier with a subset of the full
training data. While showing some improvement in classification
accuracy, it also proves useful for reducing the number of training
instances and thus reducing the training time for the classifier.

I. INTRODUCTION AND RELATED WORK

The performances of embedded systems are continuously
rising. Despite the manufacturing process limitations for high-
performance computing devices, embedded systems steadily
become lighter, more energy efficient and capable of solving
more complex tasks faster. Applications such as monitoring
devices that can be worn permanently by living beings and
systems that are able to operate autonomously for decades
are just two examples. Especially the higher processing power
opens new application areas so far only accessible to full-
fledged computers. In our work, we take a look at one of
such areas: human-machine-interface devices for processing of
recorded skin surface muscular signals. We will show that an
embedded hardware system is able to process a multi-channel
signal and recognize upper-limb movements accurately.

For our work we are using the BioSleeve system developed
at the Jet Propulsion Laboratory [1] for interfacing upper-
limb muscular signals. The BioSleeve is equipped with a
high number of electromyographic (EMG) channels, with more
planned in future versions. This allows not only to reconstruct
simple actions of the monitored extremity, but to extract
more features for complex tasks such as robotic actuator and
instruments control and steering of vehicles [2]. While the
current BioSleeve prototype transmits raw sensor data over
a tether to an off-board computer for processing, the long-
term goal is to design a wireless, fully enclosed BioSleeve
system. Here, the gesture recognition will be implemented with
in-sleeve processing, to minimize the bandwidth required to
communicate gestures to a remote receiver. To ensure long

battery autonomy and robustness to changes in physical con-
ditions such as electrode slippage and user fatigue, low power
processing and adaptable algorithms should be considered. In
this context evolvable hardware (EHW) is an interesting ap-
proach, providing possibilities for self-adaptation, fast training,
and compactness [3]. While software-based Support Vector
Machine (SVM) classification was considered in [1], in this
paper we adapt and investigate the performance of a previously
proposed EHW classification system [4] on data from the
BioSleeve, explore a method for reducing the training time, and
consider implementation tradeoffs. We also compare the EHW
approach with results from conventional classifier paradigms.

Most previous explorations in decoding gestures from
EMG signals have been for the control of prostheses, typically
in decoding activity from a few residual muscles in the arm
to control a low-DOF gripper or wrist. Recent research (see
review in [5]) is focused on higher-DOF pattern recognition
that has potential to control more sophisticated prosthetic arms
that better approximate the human arm. In short term lab
tests, greater than 90% classification accuracy on up to 12
static hand gestures is reported [6], [7]. For the control of
dexterous actions, forearm EMG has been shown to provide
accurate representations of finger movements and forces [8].
Hand and individual finger tracking from a small forearm
EMG array were previously demonstrated at NASA Ames for
virtual keypads and joysticks [9]. The BioSleeve system builds
upon these prior works, a larger number of gestures has been
decoded at a very high accuracy [1].

An early use of EHW for pattern recognition was reported
in [10]. Their architecture was originally applied to character
classification but was later used for classification of EMG
signals in a prosthetic hand controller [11]. It employed a
programmable logic array (PLA)-like structure, and the config-
uration was evolved using an on-chip genetic algorithm (GA)
resulting in a compact and adaptable system. The classifier
distinguished between six different kinds of movements, with
accuracies and training times competitive to artificial neural
networks (ANNs). Using similar EMG data, experiments on in-
cremental evolution using a EHW architecture were conducted
in [12], using a two-layered architecture. The results showed
that a two-step incremental approach can lead to a better
generalization performance and shorter computation times than
traditional one-step evolution and ANNs. EHW classification
architectures applied to domains other than EMG include, for
example, the function level evolution of [13]. This architecture

was applied to typical ANN applications (however, with fewer
inputs and outputs), and attained accuracies comparable to
ANNs. A different EHW pattern classification system, Logic
Design using Evolved Truth Tables (LoDETT), was presented
in [14]. LoDETT allows for high accuracy classification on
problems with a much higher number of inputs and outputs.
However, the system does not implement online evolution
and relies on synthesis in software before the circuit is im-
plemented on a field-programmable gate array (FPGA). The
approach utilizes incremental evolution; i.e., sub-circuits are
evolved separately before being assembled into a final system.

Using the virtual reconfigurable circuit (VRC) [15] tech-
nique, we proposed an online evolvable EHW architecture,
the Functional Unit Row (FUR) architecture, for classification
tasks in [16]. The evolution part of the system has been
implemented on an FPGA, where fitness evaluation is carried
out in hardware and the evolutionary algorithm runs on an
on-chip processor. The architecture employs function level
modules as well as a method of dividing the evolution into
several smaller tasks. The architecture and another approach
based on embedded cartesian genetic programming (ECGP)
were applied to EMG signal classification for 8 classes in [17]
and up to 11 classes in [18], with promising results. The dataset
used in the following experiments contains a higher number
of gestures as well as a higher number of input channels than
previously studied with EHW approaches. A comparison of
different EHW approaches to EMG signal classification was
performed in [19]. The results indicated better classification
accuracies for the FUR and ECGP approaches. Also, the FUR
approach showed a convergence in classification accuracy with
a significantly lower number of evaluations than the other
approaches. This is related to the ensemble-like incremental
training approach where evolution is performed on a relatively
short genome, resulting in a small number of evaluations
required to find a good solution. Inspired by the bagging
method for improving stability and classification accuracy in
conventional ensemble classifier paradigms [20], in this paper
we investigate the effects of applying the method to the FUR
classifier.

The remainder of the paper is structured as follows: Sec.
II describes the BioSleeve hardware and the data collection
procedure. Then, Sec. III introduces the FUR EHW classifica-
tion architecture and the evolutionary training process. Sec.
IV documents the experiments performed and presents the
obtained results, which are then discussed in Sec. V. Finally,
conclusions and directions for future work are given in Sec.
VI.

II. THE BIOSLEEVE EMG SYSTEM

The BioSleeve uses surface electromyography (EMG) to
detect the activation of muscles in the forearm. Electrodes are
placed on the surface of the skin with two poles placed along
the length of a muscle fiber. The bioelectrical signals which
activate the muscle produce a voltage across the poles, which
is then amplified and recorded by the sensing circuitry.

A. BioSleeve Hardware

The BioSleeve V2 prototype, which is considered in this
paper, is shown in Fig. 1. A detailed description of the

Fig. 1. The JPL BioSleeve prototype. The EMG sensors are shown on the
right. Note that there is no need for precision alignment of sensors.

BioSleeve prototypes can be found in [1]. It incorporates 16
commercial dry-contact surface EMG sensors, which have
active bipolar channels, band-pass filtered from 20 to 450
Hz. Dry contact electrodes are used since the ultimate goal
is to have a quick ”slip on” donning of the BioSleeve. The
electrode sensors are mounted via Velcro fasteners on the
inside of a modified compression sleeve to provide constant
mechanical pressure on the users arm and maintain good skin
contact. The sensor array is positioned on the proximal forearm
near the elbow, to monitor activation of the major forearm
muscles. These EMG signals contain a combination of force
and position information for the wrist, hand and fingers [8].
As it can be observed in Fig. 1 the electrodes are not fixed in
a regularly spaced pattern, the rationale is that by using a large
enough number of electrodes, machine learning procedures
will find the relevant electrodes and adapt to the current user’s
fitting of the sleeve.

B. Data Acquisition and Gesture Set

For the classification experiments in this paper, we use
BioSleeve gesture data from recording sessions reported in
[1]. Here, the raw EMG signal is recorded at 1000 Hz, and
the signal is analyzed in 500-ms time windows at a rate of
10 Hz (i.e. there is an overlap of 400 ms between adjacent
time windows). Within the kth time window, the feature vector
xk = (σk

1 , ..., σ
k
d)

T is extracted, where σk
j is the standard

deviation of the signal for the jth electrode, j = 1, ..., d:

σk
j =

[
1

n− 1

n∑
i=1

(
ykj,i − ȳkj

)2] 1
2

, (1)

where ykj,i is the ith voltage sample on the jth channel in the

kth time window, ȳkj is the mean value of the {ykj,i}i samples,
and n is the number of samples in the window (n = 500
for a 500-ms window at 1000 Hz). Preliminary experiments
comparing this feature extraction method compared to more
advanced features such as the number of zero crossings, slope
sign change, and waveform length, indicate that recognition
performance is not significantly affected by the choice of
method [1].

For the data collection, the subject donned the BioSleeve
without paying particular attention to precise electrode place-
ment. The subject was prompted to make a particular static
gesture and hold it for a period time, before relaxing and
then commencing the recording of a new gesture, repeated for
the number of specified gestures. The data used in this paper
correspond to the data collected from subject B in [1]. Here,
an equal number of training and test data were recorded in two

Fig. 2. Set of 17 hand gestures.

category

decisioninput features

CLASSIFICATION

MODULE

fitness

training

patterns

EVALUATION

MODULE

configuration

configuration

&

TRAINING

MODULE

Fig. 3. A high-level overview of the on-chip EHW classification architecture

separate sessions, without removal of the BioSleeve, about 10
minutes apart. A total of 17 gestures were recorded, as shown
in Fig. 2. A subset of these gestures was also defined, as a
preliminary attempt to have a gesture set which gives higher
classification reliability. This subset leaves out gestures S 3
through S 7 and S 13 from the former set, giving a total of
11 gestures. We will hereafter refer to these gesture sets as
B 17 and B 11. With the method described above, 1615 and
1045 vectors of 16 features were extracted for the training set
for the B 17 and B 11 sets, respectively, and an equal number
of vectors for the test sets. For the experiments in this paper,
the data was normalized feature-wise to the range [0..1] on the
combined training and test set.

III. THE FUR ONLINE EHW ARCHITECTURE

The FUR EHW architecture, proposed in [4], is designed
as a circuit whose behavior can be modified through online
reconfiguration. By writing the genome bitstring from the
evolutionary algorithm (EA) to the internal configuration lines,
one obtains the phenotype circuit which can then be evaluated.

A. System Overview

A high-level view of the proposed classification system
can be seen in Figure 3. The training module incorporates
an evolutionary algorithm which configures the classification
sub-circuit in the evaluation module with a bitstring genome.
After configuration, training data is applied to the circuit under
evaluation, and a fitness value based upon the correctness

M

A

X.

D

E

T

E

C

T

O

R

CDM1

category

classification

input

pattern

CDM2

CDMP

Fig. 4. Classification module.

of the output can be returned to the training module for
use in the evolutionary process. When enough sub-circuits
have been trained in the evaluation module, the classification
module can be configured with a configuration bitstring. After
initial feature extraction, input features will be fed to the
classification module for classification, and the result will need
to be processed depending on the specific control application.
The initial feature extraction and classifier output processing
implementations will not be considered in this work.

In the following text a conceptual description of the classi-
fication module will be given. For further FPGA implementa-
tion details, an implementation of the training and evaluation
modules are described in [21]. Here, the training module
was implemented on an on-chip CPU, but the simplified
evolutionary process considered in this paper would open up
for a full hardware implementation, similar to the one reported
in [22]. Implementation details of the reconfigurable functional
units can be found in [23]. The implementation of the feature
extraction module has not been considered in this paper.

B. Architectural Elements

The classifier system consists of K category detection
modules (CDMs), one for each category Ci to be classified
– see Figure 4. The input data to be classified is presented to
each CDM concurrently on a common input bus. The CDM
with the highest output value will be detected by a maximum
detector, and the identifying number of this category will be
output from the system. Alternatively, the system could also
state the degree of certainty of a certain category by taking
the output of the corresponding CDM and dividing by the
maximum possible output.

FU FUFU

N-input AND

FU FUFU

N-input AND

input

pattern

C

O

U

N

T

E

R

output

FU FUFU

N-input AND

11 12 1N

2N2221

M1 MNM2

Fig. 5. Category detection module.

D
a

ta
 M

U
X

f

f
M

U
X

input

pattern
output

configuration

C f
addr

1

f2

Fig. 6. High-level representation of a functional unit.

Each CDM consists of M ”rules” or functional unit (FU)
rows – see Figure 5. Each FU row consists of N FUs. The
inputs to the circuit are passed on to the inputs of each FU.
The 1-bit outputs from the FUs in a row are fed into an N -
input AND gate. This means that all outputs from the FUs
must be 1 in order for a rule to be activated. The 1-bit outputs
from the AND gates are connected to an input counter which
counts the number of activated FU rows. As the number of FU
rows is increased, so is the output resolution from each CDM.
Each FU row is evolved from an initial random bitstring, which
ensures a variation in the evolved FU rows.

The FUs are the reconfigurable elements of the architec-
ture. As seen in Figure 6, each FU behavior is controlled by
configuration lines connected to the configuration registers.
Each FU has all input bits to the system available at its inputs,
but only one data element (e.g. one byte) of these bits is
chosen. One data element is thus selected from the input bits,
depending on the configuration lines. This data element, I , is
then fed to the available functions. Any number and type of
functions could be imagined, but for clarity, in Figure 6 only
two functions are illustrated. In addition, the unit is configured
with a constant value, C. This value and the input data element
are used by the function to compute the output, O, from the
unit.

C. Architecture Parameters

Through experimentation, the following functions have
shown to work well for classification tasks [4], [17]:

f Description Function
0 Greater than O = 1 if I > C, else 0
1 Less than or equal O = 1 if I ≤ C, else 0

These functions allow for the creation of a combination of
planar decision boundaries perpendicular to the axes of the
selected features for each FU row. Employing multiple FU
rows per CDM, the architecture can be compared to ensemble-
based classifier methods, such as e.g. Random Forests [24].
For the experiments in the paper, the resolution of the single
features and the constant values are 8 bits. The number of
features per data vector is equivalent to the number of EMG
channels, 16 in this case. The number of FUs per row, N , has
been set to 6 through experimentation. Each FU is encoded in
the genome string with 4, 1, and 8 bits for the feature address,
function type, and constant, respectively. This gives a total of
Bunit = 13 bits for each unit. With N = 6, the total number of
configuration bits for one FU row then is Btot = Bunit ·N =
78.

D. Evolutionary Training

While the architecture was earlier trained using a genetic
algorithm [4], the evolutionary training process now employs a
1 + 4 evolution strategy (ES) scheme, as recent experiments in-
dicate good results with this more hardware-friendly approach
[25]. In this approach a parent spawns 4 mutated offspring, and
the best fit offspring will replace the parent if it has equal to
or better fitness than the parent. A mutation rate of 3 randomly
located bit flips per genome has been used in this work. The
evolution follows an incremental fashion, in which each FU
row is evolved separately before combined with the others to
form a full classifier. This gives a genome size of 78 bits, equal
to the configuration string length of an FU row.

Each row is evolved with the training vectors (v ∈ Vt),
and fitness is based on the row’s ability to give a positive (1)
output for vectors v belonging to its own category (Cv = Cp),
while giving a negative (0) output for the rest of the vectors
(Cv �= Cp). In the case of a positive output when Cv = Cp,
the value A is added to the fitness sum. When Cv �= Cp and
the row gives a negative output (value 0), 1 is added to the
fitness sum. The other cases do not contribute to the fitness
value. The fitness function F for a row can then be expressed
in the following way, where o is the output of the FU row:

F =
∑
v∈Vt

xv where xv =

{
A · o if Cv = Cp

1− o if Cv �= Cp.
(2)

The value A is a means to direct the evolutionary search
towards making a row trigger on its designated class, and is
set to 16 in the following experiments.

As an alternative to training each row with all training
vectors, we propose to train the row using only a subset of
the training vectors, similar to the bagging technique [20].
Here, the training vector subset of each row Vb is generated by
sampling uniformly with replacement from the full training set
Vt. The number of samples is defined as a fraction 0 < b ≤ 1

of the total number of training vectors. A new bagged subset
is used for each FU row, and fitness is measured in the same
way as described above while using training vectors from Vb

instead of Vt.

IV. EXPERIMENTS AND RESULTS

This section describes the experiments and presents results
obtained.

A. Training on full dataset

We first investigate how the classification accuracy of the
architecture varies with the number of FU rows per category, in
order to investigate the tradeoff between classification accuracy
and implementation cost. Here, we train each row on the full
training set and use the test set for measuring the classification
accuracy of the full classifier. Accuracy rates are defined as
the number of samples correctly classified divided by the total
number of samples. We scale the values in the training and
test set to integer values in the range [0..255], given by 8
bit precision. FU rows were trained for a maximum of 800
generations for the B 17 set and 400 generations for the B 11
set, but evolution was terminated earlier if a maximal fitness
value was attained. The results can be seen in Fig. 7. Since each
trained classifier is different because of the evolutionary search,
we show the average and standard deviation from 50 training
runs. The results were obtained using a software simulation of
the architecture.

B. Training on Subsets

In order to investigate the effects of bagged training sub-
sets, we extended the experiments from Sec. IV-A with training
new classifiers with different subset sizes. The subset fraction
b was chosen in the range of 0.1 to 1.0. The results, averaged
over 50 runs, can be seen in Fig. 8. Next we investigate the
effect of uniform sampling per row as opposed to training
all classifier rows on the same static subset. Some selected
subset fractions b were chosen for the bagged procedure and
compared with results for equivalent static subsets, as shown
in Fig. 9. To have an impression of the impact of bagging on
the training time we measured the training time of a whole
classifier in the software simulator, using different training
subset sizes. We show the results for the two datasets on two
different generation limits in Fig. 10.

C. Classification Accuracy Comparison

To evaluate the classification accuracy of the proposed
solution we compare the FUR results, using M = 32 rows
and b = 0.2, with some conventional classification approaches:
SVM [26] and Random Forests [24].

We chose SVM for comparison as it employs the principle
of structural risk minimization which typically yields very
good generalization performance compared to other classifier
paradigms. The SVM approach uses the same parameters
as in previous experiments on BioSleeve data [1]: A radial
basis function (RBF) kernel, C = 128, γ = 0.5, and the
one-vs-one approach for multiclass decision. The LIBSVM
implementation was used for obtaining the results [27].

4 8 12 16 20 24 28 32
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FU rows

ac
cu

ra
cy

static 0.1
static 0.3
static 0.5
bagging 0.1
bagging 0.3
bagging 0.5

Fig. 9. Effect of training with a bagged subset per row versus a static subset
on classification performance, with varying subset fractions b. Solid lines show
test accuracy, dashed lines show training accuracy. B 11 dataset, average of
50 runs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

bagging subset fraction

cl
as

si
fie

r e
vo

lu
tio

n
tim

e
(s

)
B11 400 gens
B11 800 gens
B17 400 gens
B17 800 gens

Fig. 10. Training times per classifier in the software simulator as a function
of the size of the training subset. Average over 4 runs.

The Random Forests classification paradigm was chosen
as it is a popular ensemble-based classifier which has some
similarities to the FUR approach – training several simple
classifiers on a subset of the features and the training set.
The Weka [28] Random Forests implementation was used for
obtaining the results. The default values of unlimited tree
depth, and int(log2 F + 1) features to consider (where F is
the number of features) per tree, were chosen. 50 trees were
chosen to constitute the classifier.

All classifiers were trained with the training set and clas-
sification accuracy was evaluated on the test set. For the
conventional classifiers we used the RapidMiner software [29]
to set up the experiments. The results can be seen in Tables I
and II. We also include results for the accuracy of the trained
classifier on the training set. In addition, we show the accuracy

4 8 12 16 20 24 28 32
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FU rows

ac
cu

ra
cy

training
test

(a) B 17 dataset

4 8 12 16 20 24 28 32
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FU rows

ac
cu

ra
cy

training
test

(b) B 11 dataset

Fig. 7. Average classification performance on training and test set over an increasing number of FU rows. Error bars show standard deviation.

4 8 12 16 20 24 28 32
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

FU rows

ac
cu

ra
cy

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
no bagging

(a) B 17 dataset

4 8 12 16 20 24 28 32
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

FU rows

ac
cu

ra
cy

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
no bagging

(b) B 11 dataset

Fig. 8. The effect of various bagging subset fractions b on classification accuracy over an increasing number of FU rows.

of a 10-fold cross-validation process on the combined training
and test set. That is, the data is shuffled and divided into 10
folds, 9 of which are used for training, and the 10th for test
data. The process is repeated 10 times, each time using a new
fold for the test data, and the average of the test accuracies
is reported. For the FUR and Random Forest approaches, the
cross-validation results were averaged over 5 runs.

D. FPGA Implementation Analysis

In order to have an impression of the FPGA resource
requirements for an instance of the EMG classification system,

TABLE I. CLASSIFIER ACCURACY ON 17 GESTURE DATA SET (IN %)

Classifier training test xval

FUR 99.9 91.5 99.6
SVM 100.0 96.8 100.0
Random Forest 100.0 89.9 100.0

TABLE II. CLASSIFIER ACCURACY ON 11 GESTURE DATA SET (IN %)

Classifier training test xval

FUR 99.9 94.4 99.8
SVM 100.0 99.6 100.0
Random Forest 100.0 91.0 100.0

TABLE III. FPGA RESOURCES REQUIRED FOR B 11 ON XC6SLX45.

Resource Amount Available % of total

Slice registers 17952 54576 32
Slice LUTs 11763 12289 45
Occupied Slices 4803 6822 70

a VHDL-based implementation of the architecture was con-
structed. The implementation follows the VRC-based approach
described in [23]. We chose to implement an instance of
the B 11 classifier, with 16 rows per classifier as a tradeoff
between accuracy and resource requirements. Implementation
results for a Xilinx Spartan-6 XC6SLX45 device are shown
in Tab. III. Note that the implementation only covers the FU
rows and counters of the core classifier architecture and not a
fully operational system with training logic.

V. DISCUSSION

From Fig. 7 it can be seen that a high classification accu-
racy can be obtained with a relatively small number of rows
per category, and 16 rows could be a good accuracy-resource
tradeoff point for a hardware implementation. However, the
classifier seems to converge earlier for the B 11 dataset and
has less variation in the evolved classifiers, which confirms
that the B 17 dataset is more difficult and could benefit from
an even higher number of FU rows. As can be seen in Tab. III,
the B 11 instance of the classifier requires a moderate amount
of FPGA resources. Moreover, results from [23] suggest that
even smaller implementations should be possible using spe-
cial techniques, without sacrificing classification accuracy. As
an instance of the B 17 dataset would benefit from more
resources, both in terms of a higher number of categories
and a higher number of FU rows for improved accuracy, it
would be beneficial to further investigate some methods for
reducing the resource footprint. One approach could be to
device a resource sharing scheme, where the same FPGA
resources would compute the results of different FUs in a
time-multiplexed manner. This should be viable given a fast
reconfiguration scheme and the high classification speed of
the classifier. Another approach could be to devise training
methods for achieving higher classification rates with a low
number of rows, one possibility could be a boosting-inspired
approach [30].

The bagged subset training approach does not have a big
effect on classification accuracy, although some improvement
over training on the full set can be seen in Fig. 8. The effect
is more pronounced on the more difficult B 17 dataset, which
indicates that the approach could be promising for other more
difficult problems, and that the best bagging parameters will be
problem-dependent. We hypothesize that the stochastic nature
of the evolutionary training process, in starting from random
genomes to producing several different FU rows which all
have high fitness, already provides a degree of robustness to
the ensemble classifier. This may leave little room for further
robustness through the bagging technique. However, a natural
side effect of training on a reduced subset is that the fitness
evaluation needs to process fewer vectors and the training
time goes down. As Fig. 8 shows, each row can be trained
with b = 0.2 times the full amount of training vectors while
maintaining high accuracy. The reduction in training time is
confirmed in Fig. 10, but these results are from the software

simulated model with high overhead in the genetic operations,
and it is believed that the effect could be more pronounced
in a hardware implementation. Training time should decrease
both because of cycling fewer vectors for each evaluation and
the lower number of generations required to achieve maximum
fitness on fewer vectors. The effect is seen best when using a
high maximum number of generations on the B 17 set because
evolution in this case tends to spend more generations on
finding a good solution. Fig. 9 confirms the need to sample
a new training subset for each FU row versus using a static
subset, however the need becomes smaller as the subset size
becomes larger.

The accuracy drop from training to test as seen in Tabs. I
and II, can be explained by the unseen test data having shifted
after the 10 minute break between the recordings, as a result of
physical conditions. The results on the cross-validation process
confirm this, since the classifier is near perfect when trained
on samples from both recording sessions. Similar behavior
is observed for the Random Forest classifier, which is not
surprising given some shared characteristics with FUR in terms
of ensembles and decision boundaries. The SVM classifier
seems to generate more general decision boundaries which can
accommodate better the shift in the test data, but also here
the accuracy drop is observed, although to a lesser extent,
for the B 17 data set. We speculate that a more advanced
training strategy would be required to elevate the classification
performance of FUR to the levels of SVM, however, this would
likely come at the cost of increased architectural complexity.

A comprehensive comparison of the FUR architecture to
other classification algorithms is not possible without hardware
implementations of all methods. This would allow for a dis-
cussion on the tradeoffs between properties such classification
accuracy, training and classification speed, and resource usage.
While this is not the scope of this paper, one advantage of the
ES-trainable FUR classifier system would be the hardware-
friendly integration of the learning structure, while SVM needs
a computationally complex learning algorithm.

VI. CONCLUSIONS AND FUTURE WORK

We have investigated the applicability of the FUR EHW
classifier architecture to EMG signal classification with the
BioSleeve system. Although not giving quite as high clas-
sification accuracy as a software-based SVM classifier, the
performance is above 90% for a high number of classes and
compares well with other approaches. The architecture can fit
on a relatively small FPGA device and has potential for further
resource optimization.

We have also investigated a method of reducing the training
set for the incremental evolution-based classifier approach. The
method shows that some accuracy gain can be attained whereas
the biggest advantage is a reduced training set size resulting
in shorter evolution times without loss in accuracy.

Future work includes a full hardware implementation of
the classifier system including the training unit in order to
evaluate training speed and power consumption. With the goal
of long periods of battery-based operation, active channel
selection methods for power saving should be explored in
future versions. It would also be interesting to investigate a
resource sharing scheme such that a high number of classes

would give less impact on resource usage. Further investigation
into training procedures and classification properties of the
architecture should also be pursued.

ACKNOWLEDGMENT

Kyrre Glette would like to acknowledge Adrian Stoica for
hosting his research stay at the Jet Propulsion Laboratory,
and the U.S. - Norway Fulbright Foundation for Educational
Exchange for sponsorship. Part of this research was conducted
at the Jet Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronautics and
Space Administration. Part of this work was sponsored by the
Defense Advanced Research Projects Agency (DARPA) MTO
under the auspices of Dr. Jack Judy through the Army Research
Office, Contract No. MIPR2C080XR010.

REFERENCES

[1] M. Wolf, C. Assad, A. Stoica, K. You, H. Jethani, M. Vernacchia,
J. Fromm, and Y. Iwashita, “Decoding Static and Dynamic Arm
and Hand Gestures from the JPL BioSleeve,” in Proceedings IEEE
Aerospace Conference. IEEE, 2013, to appear.

[2] M. Wolf, C. Assad, M. Vernacchia, J. Fromm, and H. Jethani, “Gesture-
Based Robot Control with Variable Autonomy from the JPL BioSleeve,”
in Robotics and Automation (ICRA), 2013 IEEE International Confer-
ence on. IEEE, 2013, to appear.

[3] I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya, T. Ya-
mauchi, T. Inuo, N. Kajihara, M. Iwata, D. Keymeulen, and T. Higuchi,
“A Gate-Level EHW Chip: Implementing GA Operations and Recon-
figurable Hardware on a Single LSI,” in Proceedings 2nd Interna-
tional Conference on Evolvable Systems (ICES), ser. LNCS, vol. 1478.
Springer, 1998, pp. 1–12.

[4] K. Glette, J. Torresen, and M. Yasunaga, “An Online EHW Pattern
Recognition System Applied to Face Image Recognition,” in Proceed-
ings Applications of Evolutionary Computing (EvoWorkshops2007), ser.
Lecture Notes in Computer Science. Springer, 2007, vol. 4448, pp.
271–280.

[5] B. Peerdeman, D. Boere, H. J. B. Witteveen, M. H. A. Huis in ’t
Veld, H. J. Hermens, S. Stramigioli, J. S. Rietman, P. H. Veltink,
and S. Misra, “Myoelectric forearm prostheses: State of the art from
a user-centered perspective,” Journal of rehabilitation research and
development, vol. 48, no. 6, pp. 719–738, August 2011.

[6] P. Zhou, M. Lowery, K. Englehart, H. Huang, G. Li, L. Hargrove,
J. Dewald, and T. Kuiken, “Decoding a new neural–machine interface
for control of artificial limbs,” Journal of neurophysiology, vol. 98,
no. 5, pp. 2974–2982, 2007.

[7] G. Li, A. Schultz, and T. Kuiken, “Quantifying pattern recognitionbased
myoelectric control of multifunctional transradial prostheses,” Neural
Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 18,
no. 2, pp. 185–192, 2010.

[8] F. Tenore, A. Ramos, A. Fahmy, S. Acharya, R. Etienne-Cummings,
and N. Thakor, “Decoding of individuated finger movements using
surface electromyography,” Biomedical Engineering, IEEE Transactions
on, vol. 56, no. 5, pp. 1427–1434, 2009.

[9] K. Wheeler, M. Chang, and K. Knuth, “Gesture-based control and emg
decomposition,” Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, vol. 36, no. 4, pp. 503–514, 2006.

[10] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, B. Manderick, and
T. Furuya, “Evolvable Hardware and its Applications to Pattern Recog-
nition and Fault-Tolerant Systems,” in Towards Evolvable Hardware:
The evolutionary Engineering Approach, ser. LNCS. Springer, 1996,
vol. 1062, pp. 118–135.

[11] I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya, T. Ya-
mauchi, T. Inuo, N. Kajihara, M. Iwata, D. Keymeulen, and T. Higuchi,
“A Gate-Level EHW Chip: Implementing GA Operations and Reconfig-
urable Hardware on a Single LSI,” in Intl. Conf. on Evolvable Systems
(ICES), ser. LNCS, vol. 1478. Springer, 1998, pp. 1–12.

[12] J. Torresen, “Two-Step Incremental Evolution of a Digital Logic Gate
Based Prosthetic Hand Controller,” in Intl. Conf. on Evolvable Systems
(ICES), ser. LNCS. Springer, 2001, vol. 2210, pp. 1–13.

[13] M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and
T. Higuchi, “Hardware Evolution at Function Level,” in Proceedings 4th
Parallel Problem Solving from Nature (PPSN), ser. LNCS, vol. 1141.
Springer, September 1996, pp. 62–71.

[14] M. Yasunaga, T. Nakamura, and I. Yoshihara, “Evolvable Sonar Spec-
trum Discrimination Chip Designed by Genetic Algorithm,” in Systems,
Man and Cybernetics, vol. 5. IEEE, 1999, pp. 585–590.

[15] L. Sekanina and R. Ruzicka, “Design of the Special Fast Reconfigurable
Chip Using Common FPGA,” in Design and Diagnostics of Electronic
Circuits and Systems (DDECS), 2000, pp. 161–168.

[16] K. Glette, J. Torresen, and M. Yasunaga, “An Online EHW Pat-
tern Recognition System Applied to Face Image Recognition,” in
Applications of Evolutionary Computing (EvoWorkshops), ser. LNCS.
Springer, 2007, vol. 4448, pp. 271–280.

[17] K. Glette, J. Torresen, T. Gruber, B. Sick, P. Kaufmann, and M. Platzner,
“Comparing Evolvable Hardware to Conventional Classifiers for Elec-
tromyographic Prosthetic Hand Control,” in Proceedings 3rd NASA/ESA
Conference on Adaptive Hardware and Systems (AHS). Los Alamitos,
CA, USA: IEEE CS Press, 2008, pp. 32–39.

[18] P. Kaufmann, K. Glette, T. Gruber, M. Platzner, J. Torresen, and
B. Sick, “Classification of electromyographic signals: Comparing evolv-
able hardware to conventional classifiers,” IEEE Transactions On Evo-
lutionary Computation, vol. 17, pp. 46–63, 2013.

[19] K. Glette, J. Torresen, P. Kaufmann, and M. Platzner, “A Comparison
of Evolvable Hardware Architectures for Classification Tasks,” in Intl.
Conf. on Evolvable Systems (ICES), ser. LNCS, vol. 5216. Springer,
2008., pp. 22–33.

[20] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[21] K. Glette, J. Torresen, and M. Yasunaga, “Online Evolution for a
High-Speed Image Recognition System Implemented On a Virtex-II
Pro FPGA,” in Proceedings 2nd NASA/ESA Conference on Adaptive
Hardware and Systems (AHS). Los Alamitos, CA, USA: IEEE CS
Press, 2007, pp. 463–470.

[22] T. Martinek and L. Sekanina, “An evolvable image filter: Experimental
evaluation of a complete hardware implementation in fpga,” Lecture
Notes in Computer Science, vol. 2005, no. 3637, pp. 76–85, 2005.

[23] K. Glette, J. Torresen, and M. Hovin, “Intermediate level FPGA recon-
figuration for an online EHW pattern recognition system,” in Adaptive
Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on.
IEEE, 2009, pp. 19–26.

[24] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[25] K. Glette, J. Torresen, P. Kaufmann, and M. Platzner, “A Comparison
of Evolvable Hardware Architectures for Classification Tasks,” in Pro-
ceedings 8th International Conference on Evolvable Systems (ICES),
ser. Lecture Notes in Computer Science, vol. 5216. Springer, 2008,
pp. 22–33.

[26] C. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167,
1998.

[27] C. Chang and C. Lin, “Libsvm: a library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2,
no. 3, p. 27, 2011.

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. Witten, “The weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[29] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler,
“Yale: Rapid prototyping for complex data mining tasks,” in KDD
’06: Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, L. Ungar, M. Craven,
D. Gunopulos, and T. Eliassi-Rad, Eds. New York, NY, USA: ACM,
August 2006, pp. 935–940.

[30] Y. Freund and R. Schapire, “A desicion-theoretic generalization of on-
line learning and an application to boosting,” in Computational learning
theory. Springer, 1995, pp. 23–37.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

