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Abstract— Evolvable hardware has shown to be a promising
approach for prosthetic hand controllers as it features self-
adaptation, fast training, and a compact system-on-chip imple-
mentation. Besides these intriguing features, the classification
performance is paramount to success for any classifier. However,
evolvable hardware classifiers have not yet been sufficiently
compared to state-of-the-art conventional classifiers. In this
paper, we compare two evolvable hardware approaches for signal
classification to three conventional classification techniques: k-
nearest-neighbor, decision trees, and support vector machines. We
provide all classifiers with features extracted from electromyo-
graphic signals taken from forearm muscle contractions, and try
to recognize eight different hand movements. Experimental re-
sults demonstrate that evolvable hardware approaches are indeed
able to compete with state-of-the-art classifiers. Specifically, one
of our evolvable hardware approaches delivers a generalization
performance similar to that of support vector machines.

I. INTRODUCTION

Prosthetic hand controllers (PHCs) are usually operated
by the signals generated by contracting muscles – namely
electromyographic (EMG) signals. Such signals consist of a
transient phase and a steady state phase. While some investi-
gations have been done on PHC using transient bursts [1], the
classical approach for the classification of muscle contractions
extracts feature vectors from the signals’ steady state.

There are several goals in PHC design. For example, while
classic PHCs drive actuators with constant force, a new and
rather ambitious goal is to create a proportional prosthetic hand
controller [2]. Then, traditional PHCs only cover two motions
– open and close. Here it is highly desirable for users to have
improved control over motions using prostheses with more
degrees of freedom. To that end, PHCs classifying multiple
movements are necessary. Finally, having access to PHCs
which adapt themselves to the changes in the user’s EMG
signal patterns would be a great advantage. The EMG patterns
are influenced by parameters such as muscle fatigue, skin
conductivity, and age. Currently, users are required to adapt
to pre-defined EMG patterns, partly supported by periodic re-
training sessions.

In this context evolvable hardware (EHW) becomes an inter-
esting approach, providing possibilities for self-adaptation, fast
training, and compactness. The combination of genetic algo-
rithms (GAs) and reconfigurable hardware makes it possible to

have hardware systems which can be automatically constructed
and then adapt their structure to specification changes.

Kajitani et al. presented such an EHW-based adaptive
PHC [3]–[6]. A structure of AND gates followed by OR gates
is evolved using a GA which is implemented on the same
chip, resulting in a very compact PHC system. The controller
is trained with feature vectors extracted from EMG data where
one input signal consists of four channels at a resolution of
four bits. The classifier distinguishes between six different
movements. The classification performance was computed by
dividing the EMG data into two halves and using one half
as training data and the second half as test data. Although
the results show a competitive classification rate for evolved
circuits compared to artificial neural networks (ANNs), it was
noted that the size of the used data set might be insufficient
which is underlined by the strongly varying classification rates.
As a result of having the GA implemented entirely in hardware
and on the same chip, the learning time (800ms) for the
EHW approach is significantly shorter than for the ANN. Short
training times are important for the user-friendliness of a PHC,
especially if online adaptation is applied.

Using similar EMG data, Torresen conducted experiments
on incremental evolution of an EHW architecture in [7]–[9].
The results showed that a two-step incremental approach can
lead to a better generalization performance than both tradi-
tional one-step evolution and ANN. In addition, combining
the best subsystems from different runs further increased the
average generalization performance. The total evolution time
was also shortened by applying the incremental approach.

A large-input EHW pattern classification system, Logic
Design using Evolved Truth Tables (LoDETT), was proposed
by Yasunaga et al. [10]. Although providing high classification
accuracy and speed, the system lacks the ability of online
evolution.

A major challenge is to actually map evolved circuits
to reconfigurable hardware at runtime, as for todays field-
programmable gate arrays (FPGAs) there exist no commer-
cial tools that support the online reconfiguration at the fine-
granular level of logic gates and wires. An alternative EHW
approach to online reconfigurability on FPGAs is the Virtual
Reconfigurable Circuit (VRC) method proposed by Sekanina
in [11]. This method obtains virtual reconfigurability by chang-



ing register values and multiplexor control signals in the user
circuit. The advantages of this technique are faster reconfigu-
ration and applicability to all SRAM-based FPGAs. However,
the method potentially requires much logic resources.

Using the virtual reconfiguration technique, Glette et al.
proposed an online evolvable EHW architecture for classifica-
tion tasks [12]–[14]. The architecture was applied to multiple-
category face image recognition and sonar return classification.
The evolution part of the system has been implemented on an
FPGA, where fitness evaluation is carried out in hardware and
the evolutionary algorithm runs on an on-chip processor.

Non-EHW adaptable controllers for PHC-related tasks have
also been proposed. An example is [15] where a 6-class con-
troller is developed. More recently, support vector machines
(SVMs) have been applied to PHCs. Successful experiments
include an 8-class controller controlling a robotic arm [16] and
a controller allowing for finger movements [17].

Given the possibilities for self-adaptation, fast training, and
compact classifier circuits, we continue the line of research on
EHW-based PHCs. In this paper we investigate the classifica-
tion performance of EHW approaches for a multi-movement
problem and see if they are competitive to conventional
classifier approaches. For this we have collected a new EMG
data set with 8 different motion classes spanning three days
which can be used as a common reference. We present two
different EHW approaches and compare their performance to
three conventional approaches, one of which is SVM, as this
is regarded as one of the most powerful classifier methods
existing today.

The paper is structured as follows. Section II describes the
setup of the EMG sensor system and the signal processing
applied to obtain feature vectors. The tested conventional
classifiers as well as the two EHW approaches are detailed in
Section III. The experimental results are given and discussed
in Section IV. Finally, Section V concludes the paper.

II. EMG SENSOR SYSTEM AND FEATURE EXTRACTION

For EMG data acquisition, we use a measurement system
comprising four components: EMG sensors (Tyco Arbo*,
Ag/AgCl, 35 mm), amplifiers (Biovison [18]), A/D converters
(N.I. [19]), and a standard computer. Our system continuously
monitors four sensor channels with 14 bit resolution at a
sampling rate of 6 kHz. Two important requirements for such a
measurement system are the reduction of noise in the analog
signal domain and a reproducible biomechanical experiment
setup.

To reduce noise, we employ an optical bridge (Sonowin
[20]) to galvanically decouple the signal amplifiers and the
A/D converters from the computer that accumulates the data.
A separate battery provides a stable power supply to the
amplifiers and A/D converters. Moreover, the amplifiers have
been placed as near as 10 cm to the skin-attached electrodes
in order to minimize parasitic inductance of a significant level.

We have placed the four electrode pairs on the top, bottom,
medial, and lateral sides of the forearm as shown in Figure 1
with the reference at the wrist. The exact electrode positions
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Fig. 1. Sensor placement (muscle anatomy taken from [21]).

a) b) c) d)
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Fig. 2. Motion classes: a) open, b) close, c) flexion, d) extension, e) ulnar
deviation, f) radial deviation, g) pronation and h) supination.

have been determined specifically for each test subject to
obtain pronounced signals. After this initial calibration, the
electrode positions have been marked to be able to re-establish
the experimental setup on different days.

In a single experiment run, the test subject had to perform 20
iterations of a sequence of eight different movements. These
movements are open, close, flexion, extension, ulnar deviation,
radial deviation, pronation, and supination, and are depicted
in Figure 2. A single movement consists of two phases: a 9
seconds relaxation part and an 11 seconds contraction part.
The EMG signal for the contraction part divides into a three
seconds phase at the onset of the contraction containing the
transient components of the EMG signal, and an eight seconds
steady state phase which corresponds to a constant force
contraction. A part of this steady state phase has been used
for classification. An example for a complete EMG signal is
presented in Figure 3.

Signal preprocessing and feature extraction is done com-
pletely in the digital domain. Following the approach presented
by Kajitani et al. in [5], we extract the features in four steps:
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Fig. 3. EMG signal preprocessing. The left figure shows the raw signals for all four channels, consisting of a nine seconds relaxation phase, a three seconds
transient phase with intensified activity, and an eight seconds steady state contraction phase. The center figure presents the DC offset-compensated first 1.9
seconds of the steady state phase, and the right figure the RMS smoothed signals from which the features are extracted.

1) For every channel k, k = 1, . . . , 4, and movement p, p =
1, . . . , 8, the sensor DC offset okp is calculated as the
mean value of all signal samples between the third and
the fifth second of the signal relaxation phase.

2) The steady state signal dikp is DC offset-compensated
and smoothed by a root mean square (RMS) method
with a window size of ws = 600. The first 1.9 seconds
(11′400 samples at 6 kHz) of the rectified and smoothed
signal d′jkp are calculated by

d′jkp =
[

1
ws

j+ws−1∑
i=j

(dikp − okp)2
] 1

2

,

with j = 1 . . . 11′400.
3) For this signal, a logarithm-transformed moving average

is computed with a window size of wf = 6′000 samples
and a shift amount of sf = 600 samples. The non-
normalized feature thus consists of 10 values and is
defined as

flmkp = − log
(

1
wf

lm+wf−1∑
j=lm

d′jkp

)
,

with lm = 1 + (m− 1) · sf , and m = 1, . . . , 10.
4) Finally, the features are normalized for each channel

separately:

glkp =
flkp −minl,p(flkp)

maxl,p(flkp)−minl,p(flkp)

Taking all k = 4 channels into account, the feature
vector for a single movement consists of 10× 4 values.
These 40 values are fed into the classifiers.

III. CLASSIFIERS, MODELS, AND ARCHITECTURES

In this section the different classification approaches to the
multi-movement PHC problem are described. First, approaches
based on conventional classification techniques are presented,
followed by two EHW approaches.

A. Conventional Classification Techniques

In order to compare the results of the evolvable hardware
classifiers to some conventional classifier paradigms, we have
selected three paradigms which realize different forms of
decision boundaries between classes.
k-nearest-neighbor (kNN) is a very simple data-based ap-

proach for classification [22]. We regard kNN as a kind of
baseline method. Here, the number of neighbors is set to
k = 5.

Decision trees (DTs) can be used for the classification of
numerical as well as categorical data. A DT realizes a set
of well-interpretable if-then rules. In a tree structure, each
leaf node represents a classification decision, each non-leaf
node evaluates the corresponding attribute. An input sample
is classified by successive tests from the root of a DT down to
a leaf. Here, we use the C4.5 algorithm [23] to build the DT.
C4.5 selects the next attribute (based on a greedy principle)
according to an information gain measure. Pruning techniques
such as subtree raising are applied to reduce an overfitting of
the classifier to the training data set.

SVMs basically use a hyperplane to separate two classes
[24]. For problems that can not be linearly separated in the
input space, SVMs find a solution using a nonlinear transfor-
mation of the original input space into a high-dimensional so-
called feature space, where an optimal separating hyperplane
is determined. Those hyperplanes are called optimal that have
a maximal margin, where margin means the minimal distance
from the separating hyperplane to the closest (mapped) data
points (so-called support vectors). The transformation is usu-
ally realized by nonlinear kernel functions, e.g., Gaussian ker-
nels. ν-SVMs, which are used here, introduce slack variables
– being subject to minimization as well – to allow a certain
degree of misclassification. The key advantage of SVMs is
the principle of structural risk minimization which typically
yields very good generalization performance compared to
other classifier paradigms.

The experiments with kNN, DT, and SVM have been
conducted with the data mining framework RapidMiner [25].



B. The ECGP EHW Model

The first EHW-based classifier relies on a variant of the
Embedded Cartesian Genetic Programming (ECGP) model.
ECGP is an extension of the popular FPGA-oriented cartesian
genetic programming (CGP) model [26]. CGP is a structural
hardware model that arranges logic cells in a two-dimensional
geometric layout. In Figure 4, a parameterized CGP model is
shown. The model consists of nc × nr combinational logic
blocks, ni primary inputs, and no primary outputs. A logic
block has nn inputs and implements one out of nf different
logic functions of these inputs. While the primary inputs and
outputs can connect to any logic block input and output,
respectively, the connectivity of the logic block inputs is
restricted. The input of a logic block at column c may only
connect to the outputs of blocks in columns c − l, . . . , c − 1
as well as to the primary inputs. The levels-back parameter l
restricts wiring to hardware-friendly local connections. More
importantly, as only feed-forward connections are allowed the
creation of combinational feedback loops is avoided. The logic
block genes are mapped to the array in order of their position
within the chromosome. Consequently, a CGP configuration
implicitly encodes the placement of logic blocks but no
routing.
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Fig. 4. Cartesian Genetic Programming Model.

ECGP extends CGP by configuring it as a single line of
functional nodes (nr = 1, l = nc) and by adding the automatic
definition and reuse of sub-functions (modules) [27]. Modules
are defined as compositions of primitive nodes, see Figure 5.
The size of a module is restricted, which also restricts the
maximal chromosome size. The functional set contains all
boolean functions having nn = 4 inputs. We have improved
the ECGP model with an age-based module creation technique.
Age-based module creation aggregates primitive nodes that
have persisted in the chromosome for a higher number of
generations. The rationale is that aged nodes are likely to
contribute directly or indirectly to an individual’s success and
should therefore be preferred over randomly selected nodes
for module creation.

Our EHW classifier system evolves six classifier circuits
for each movement (class) Cp, with p = 1, . . . , P , and
P = 8. Each of the 40 elements of a feature vector is linearly
quantized to a 4-bit representation and input to a 1-out-of-16
encoder. The resulting 40× 16 bits are then fed to a classifier
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Fig. 5. The Embedded Cartesian Genetic Programming Model automatically
creates modules as compositions of primitive nodes.

TABLE I
PARAMETERS FOR THE EVOLUTION OF THE ECGP EHW CLASSIFIER

ni / no / nr / nc 640 / 1 / 1 / 50–250
nn / nf 4 / B4

#fitness evaluations per generation 4
mutation prob. 1.0
mutation rate 0.03
one point mutation prob. 0.6
compress / expand prob. 0.1 / 0.2
module point mutation prob. 0.04
add / remove module input prob. 0.01 / 0.02
add / remove module output prob. 0.01 / 0.02
maximum module size 10

circuit. A single classifier differentiates between class Cp and
the remaining classes. For each feature vector and class, we
calculate the maximum of activated classifier circuits and take
the class with the most activations as a result. In case of a tie,
no classification decision is taken.

During the training phase, we have to determine a fitness
value for each classifier circuit. The set of training feature
vectors X splits into P subsets Xi for which we know the
correct classification result. The fitness for a classifier circuit
cp that recognizes class Cp is determined as the square error
distance to the predictions of a perfect classifier c∗p:

f(cp) =

1 +
1
|X|

8∑
i=1

[∑
x∈Xi

|c∗p(x)− cp(x)|
]2
−1

Similar to [27] we have chosen a standard 1+4 evolutionary
strategy as the optimization algorithm. The parameters of
the ECGP model and the evolutionary strategy are shown in
Table I. The population is initialized randomly with a length
of 50 logic blocks. Depending on the created modules, the
chromosome is allowed to grow up to 250 blocks.

C. The Functional Unit Row EHW Architecture

The second EHW-based classifier investigated in this paper
is specifically tailored to classification tasks and online evo-
lution. To facilitate online evolution, the classifier architecture



is implemented as a circuit whose behavior and connections
can be controlled through configuration registers, similar to
the VRC approach [11]. By writing the genome bitstream
produced by the GA to these registers, one obtains the phe-
notype circuit which can then be evaluated. The architecture
is presented on a hardware-abstracted level in the following
sections. Details about the implementation can be found in
[13].

a) Classification Module: The classifier system consists
of P category detection modules (CDMs), one for each
category Cp to be classified – see Figure 6. The input data
to be classified is presented to each CDM concurrently on a
common input bus. The CDM with the highest output value
will be detected by a maximum detector, and the identifying
number of this category will be output from the system. In the
case of a tie, the Cp with the lowest index p is chosen.
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Fig. 6. EHW classification module view. The pattern to be classified is input
to all of the category detection modules.

b) Category Detection Module: Each CDM consists of
M ”rules” or functional unit (FU) rows – see Figure 7. Each
FU row consists of N FUs. The inputs to the circuit are passed
on to the inputs of each FU. The 1-bit outputs from the FUs
in a row are fed into an N -input AND gate. This means that
all outputs from the FUs must be 1 in order for a rule to be
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Fig. 7. Category detection module. N functional units are connected to an
N -input AND gate.
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Fig. 8. Functional unit. The configuration lines are shown in gray. The data
MUX selects which of the input data to feed to the functions f1 and f2. The
constant C is given by the configuration lines. Finally, the f MUX selects
which of the function results to output.

activated. The 1-bit outputs from the AND gates are connected
to an input counter which counts the number of activated FU
rows. As the number of FU rows is increased, so is the output
resolution from each CDM. Each FU row is evolved from
an initial random bitstream, which ensures a variation in the
evolved FU rows.

c) Functional Unit: The FUs are the reconfigurable
elements of the architecture. As seen in Figure 8, each FU
behavior is controlled by configuration lines connected to the
configuration registers. Each FU has all input bits to the system
available at its inputs, but only one data element (e.g., one
byte) of these bits is chosen. One data element is thus selected
from the input bits, depending on the configuration lines. This
data is then fed to the available functions. Any number and
type of functions could be imagined, but for clarity, in Figure 8
only two functions are illustrated. The choice of functions for
the EMG classification application will be detailed below. In
addition, the unit is configured with a constant value, C. This
value and the input data element are used by the function to
compute the output from the unit. The advantage of selecting
which inputs to use is that connection to all inputs is not
required. A direct implementation as done in the LoDETT
system [10] would have required N = 40 FUs in a row for
the PHC application. In contrast, our system uses N = 4 units.
The rationale is that not all of the inputs are necessary for the
classification.

The 40 normalized amplitudes (10×4 channels) of the input
EMG signal are converted to 8-bit values before they are input
to the FUs. Based on the data elements of the input being 8-
bit values, the functions available to the FU elements have
been chosen to greater than and less than or equal. Through
experiments these functions have shown to work well, and
intuitively this allows for discriminating signals by looking
at the different channels’ amplitudes. The constant is also 8
bits, and the input is then compared to this value to give true
or false as output. This can be summarized as follows, with
I being the selected input value, O the output, and C the
constant value:

f Description Function
0 Greater than O = 1 if I > C, else 0
1 Less than or equal O = 1 if I ≤ C, else 0



The GA is written to be run on the PowerPC 405 core
in the Xilinx Virtex-II Pro (or better) FPGAs [28], or the
MicroBlaze soft processor core available for a greater number
of FPGA devices. A bit string (genome) is associated with
each individual in the population. Each FU is encoded in the
genome string with 6, 1, and 8 bits for the feature address,
function type, and constant, respectively. This gives a total
of Bunit = 15 bits for each unit. The total amount of
bits in the genome for one FU row is then, with N = 4:
Btot = Bunit ·N = 60.

Evolving the whole classification system in one run would
give a very long genome, therefore an incremental approach is
chosen. Each category detector CDMp is evolved separately,
since there is no interdependency between the different cate-
gories. This is also true for the FU rows each CDM consists of.
Thus, the evolution can be performed on one FU row at a time.
This significantly reduces the genome size. One then has the
possibility of evolving CDMp in M steps before proceeding
to CDMp+1. However, we evolve only one FU row in CDMp

before proceeding to CDMp+1. This makes it possible to have
a working system in P evolution runs (that is, 1/M of the total
evolution time). While the recognition accuracy is lower with
only one FU row for each CDM, the system is operational
and improves gradually as more FU rows are added for each
CDM.

A certain set of the available vectors, Vt, are used for
training of the system, while the remaining, Vv , are used for
verification after the evolution run. Each row of FUs is fed with
the training vectors (v ∈ Vt), and fitness is based on the row’s
ability to give a positive (1) output for vectors v belonging
to its own category (Cv = Cp), while giving a negative (0)
output for the rest of the vectors (Cv 6= Cp). In the case of
a positive output when Cv = Cp, the value A is added to
the fitness sum. When Cv 6= Cp and the row gives a negative
output (value 0), 1 is added to the fitness sum. The other cases
do not contribute to the fitness value. The fitness function F
for a row can then be expressed in the following way, where
o is the output of the FU row:

F =
∑
v∈Vt

xv where xv =
{
A · o if Cv = Cp

1− o if Cv 6= Cp

For the experiments, a value of A = 4 has been used. This
emphasis on the positive matches for Cp has shown to speed
up the evolution. Further, the architecture parameters N = 4
FUs per row and M = 24 rows per CDM have been used.
A maximum of 100 generations have been allowed for each
evolution run, however, evolution has been terminated earlier
in case maximum fitness was reached. The GA follows the
Simple GA approach [29], with elitism, a population size of
32 and a crossover rate of 0.9. Mutation follows a customized
scheme described in [12].

IV. EXPERIMENTS AND RESULTS

This section first presents the experiments we have con-
ducted and the metrics we have used to evaluate the different

classification approaches, and then shows and discusses the
obtained results.

A. Classification Experiments

In order to evaluate the classification performance of the
different classifiers, we have collected and preprocessed EMG
data from a test subject on three consecutive days. As de-
scribed in Section II, a single feature vector for one movement
comprises 40 values. On each day, we have collected feature
vectors from 20 iterations of 8 different movements. Collecting
data over a period of three days gives us a more varied data
set than collecting all the data in a single experiment run
and, therefore, provides a more realistic basis for testing the
classifiers’ generalization abilities.

We use the same k-fold cross-validation technique to deter-
mine the classification rates of all classifiers. This technique
segments an overall data set into k subsets of approximately
equal size. In k runs, one subset is used for testing whereas
the others are used for the training of the classifiers. For
each separate day (Day1, Day2, Day3), we have defined a
classification experiment using leave-one-out cross-validation.
That is, k is set to equal the number of feature vectors. The
next classification experiment combines all three days (Day1–
3) and determines the classification performance using the
same leave-one-out scheme. The final experiment (2of3) uses
3-fold cross-validation, where two days are used for training
and the third day for testing. This is repeated three times, such
that every day once provides test data. The 2of3 experiment
has been set up with the intention of measuring the classifiers’
session independence, i.e., covering the case of using the
prosthesis every day without retraining.

B. Classification Performance Results

As a metric to compare the classification performance of
the different approaches we use the classification accuracy
expressed by the error rate. Table II presents the test error
rates which show the classifiers’ generalization abilities, and
Table III presents the error rates obtained for the training
data sets pointing to the classifiers’ approximation abilities.
kNN, DT, and SVM are the k-nearest-neighbor, decision tree,
and support vector machine approaches, respectively. Table
IV presents the error rates for the individual movements for
the evolvable hardware approaches and the SVM. EHW1 and
EHW2 are the evolvable hardware approaches, where EHW1
refers to the ECGP-based model (see Section III-B) while
EHW2 denotes the FU row architecture (see Section III-C).

Since the EHW classifiers are evolved from random
genomes, each evolved classifier has a different structure and
the classification rates vary slightly. For the experiments Day1,
Day2, Day3 and Day1–3, the leave-one-out technique requires
us to evolve a rather high number of classifiers which averages
out the differences in initial genomes. The 2of3 experiment,
however, generates only three classifiers. To achieve sound
error rates, we have evolved 10 × 3 classifiers and averaged
the results. Further, the training error for EHW1 is 5% in all



TABLE II
TEST ERRORS (GENERALIZATION)

Day1 Day2 Day3 Day1–3 2of3
kNN 3.5 % 4.6 % 4.6 % 4.5 % 5.6 %

DT 9.7 % 11.3 % 10.5 % 9.0 % 15.9 %
SVM 4.2 % 4.0 % 2.6 % 4.5 % 5.4 %

EHW1 9.8 % 4.0 % 5.3 % 9.0 % 10.6 %
EHW2 9.0 % 4.6 % 4.0 % 4.9 % 8.4 %

TABLE III
TRAINING ERRORS (APPROXIMATION)

Day1 Day2 Day3 Day1–3 2of3
kNN 2.8 % 2.7 % 4.0 % 3.6 % 3.4 %

DT 1.4 % 2.0 % 1.3 % 1.8 % 2.0 %
SVM 1.4 % 0.7 % 2.0 % 3.6 % 2.6 %

EHW1 5.0 % 5.0 % 5.0 % 5.0 % 5.0 %
EHW2 1.9 % 0.8 % 0.0 % 3.6 % 2.6 %

experiments, as in the evolution of EHW1 classifiers this rate
has been used as termination criterion.

C. Discussion

From the experimental results, we can make the following
observations:
• Among the conventional classifiers, kNN yields surpris-

ingly good results. While this approach is likely to be
inapplicable for a real prosthetic hand controller as all the
data have to be stored and evaluated for the classification
decision, it shows that the classification problems posed
by our experiments basically can be solved with very
simple classifiers. DT – despite the pruning techniques
which have been applied – are prone to overfitting in this
application, in particular in experiment 2of3. Amongst the
conventional classifiers, SVM yield – as expected – the
best results.

• The EHW approaches – and this is the main result of
our experiments – also yield a very good classification
performance. The test errors of EHW1 and EHW2 are
between those of kNN and DT. EHW2 performs better
than EHW1 with a generalization performance which
is very similar to that of SVM. When observing the
individual movement results (see Table IV), one can see
that the lowest error rates vary between the two EHW
architectures and the SVM, and there is no approach
which is consistently the best.

• From the viewpoint of the different experiments, we can
state that the problem in experiment 2of3 is the most
difficult. Compared to other experiments, the test errors
are higher due to the fact that the classifiers have to cope
with data obtained in different sessions. However, the
2of3 experiment is possibly the most important one as
it is closest to a real application scenario.

V. CONCLUSION AND FUTURE WORK

In this paper, we have compared two EHW approaches for
a multi-motion PHC to state-of-the-art conventional classifica-

tion techniques. One of the EHW approaches is rather general,
whereas the second is tailored for online evolution and classifi-
cation tasks. We have detailed our method for acquiring EMG
data and extracting feature vectors. Based on the obtained
data, we have defined several experiments and computed the
classification accuracy for the different classifiers. The main
result of this paper is that EHW classifiers are on par with
conventional techniques. This insight is of utmost importance
as the appeal of EHW approaches roots in their suitability
for self-adaptation, fast training, and compact system-on-chip
implementation. Knowing that EHW approaches also compete
in terms of classification performance motivates future work
along the following lines:

Our insight gained through experimenting clearly shows
that the generalization performance of all classifiers could be
improved significantly if more training data from additional
sessions were available. Hence, we plan to expand the number
of sessions and test subjects in future work.

Interestingly, all of the classification approaches are able to
provide a differentiated output of the certainty of the match
to a given class (movement). This makes it possible to define
thresholds above which no classification result is issued. For
example, if there are two movements with high output values
and thus high certainty, the prosthetic hand controller will not
drive the actuators. Such uncertain classifications can indeed
be dropped in a PHC that requires sustained muscle tension
in order to perform a motion. A single classification result
generates only a limited motion of the prosthetic hand and,
overall, the user will perceive fewer errors [16]. We consider
this technique essential for developing more responsive PHCs
and will investigate it in our future work.

While the two EHW approaches presented both give good
classification results, their strategies are different. The ECGP-
based model of EHW1 is a very general model which allows
for complex structures by applying automatic generation of
building blocks. Since the model is general it should be
possible to apply it to other tasks with minimal effort. The
FU row-based EHW2 architecture, on the other hand, is using
more a priori knowledge in form of defined building blocks
and data buses tailored for classification. It is designed for
direct hardware implementation and this has also made online
reconfigurability possible. It will be of interest for future
experiments to investigate the mapping of the ECGP model
to hardware, and the possibility of increasing the flexibility of
the FU row architecture.

It is difficult to compare the classification performance of
our EHW approaches directly to the earlier EHW approaches
due to the different data sets being used. However, in future
work it would be desirable to reproduce the earlier proposed
architectures in order to perform a comparison using the same
data set.
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TABLE IV
INDIVIDUAL MOVEMENT ERRORS (GENERALIZATION)
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