
Accurate Gait Phase Detection using Surface Electromyographic
Signals and Support Vector Machines

Alexander Boschmann, Paul Kaufmann, Marco Platzner
University of Paderborn, Germany

{alexander.boschmann, paul.kaufmann, platzner}@upb.de

Abstract—Modern components and materials allow creating
increasingly complex, multi-functional prostheses with user-
specific intelligent behavior. Complex behavior control, though,
has to employ more accurate and precise models of the amputee
and his prosthesis to be able to make use of the prosthesis’
complete functionality.

In this work, we concentrate on the accurate phase detection
within a fine-grained and state-full gait model for the continuous
level gait. To this, we rely on four electromyography (EMG)
sensors, placed at the thigh, and two force sensing resistors
(FSR), placed below the heel and the toe. FSRs and a timed
gait model are used to automatize EMG data recordings.
Afterwards, gait model performance is verified using only EMG
data. Here, we use support vector machines to detect muscular
activity changes, indicating a new gait phase and therefore, a
state switch within the gait model.

We show that our approach generalizes well, even when using
only 20 to 30 seconds for training. The gait model reaches
accuracies of roughly 67% for an amputee and of 75% for a
non-amputee individual when using a precise, seven phase level
gait model.

I. INTRODUCTION

Walking is the main form of human locomotion and at
the same time the most complex motion sequence. It is
accomplished by well-coordinated effort of brain, nerves and
28 major muscles that are needed to control the trunk, joints
and limbs, generate the forces to counter gravity and move
the body forward with the least possible amount of energy
possible [1]. Losing a lower limb has a massive impact not
only on mobility but also on many other aspects of amputee’s
life. By replacing the missing limb with an artificial one,
lower limb prostheses are able to immensely improve the
amputee’s mobility and restore a great amount of quality of
life.

Current lower limb prostheses can be divided into
three groups: mechanically passive devices, microprocessor-
controlled passive devices and powered active devices [2].
Most of the currently commercially available lower limb
prostheses are mechanically passive and rely on hydraulic
and pneumatic valves and dampers, providing a constant
damping moment to the knee joint resulting in a unintuitive
control.

In both passive and active microprocessor-controlled lower
limb prostheses, sensors in combination with a micropro-
cessor are used to control the damping of the knee joint
and help overcome the drawbacks of mechanically passive
devices. Microprocessor-controlled prostheses with dynamic

knee joint damping reduce energy consumption and allow
for various locomotion modes like descending stairs [3].
Some locomotion functions like ascending stairs or walking
backwards require considerably more energy at the knee joint
and can be currently only executed smoothly with active
powered prostheses [4], [5].

By far the most frequently used locomotion mode is
level walking. Studies show that compared to non-amputee
individuals, above-knee amputees have up to a 60% higher
energy consumption [6] and utilize three times the power
and torque in the hip [7]. This can result in secondary
disorders. In current lower limb prostheses, the amputee has
to change the locomotion mode manually, either by a certain
prosthesis movement or by muscles co-contraction. Both is
often inconvenient and inefficient [8]. Consequently, there
is a need for intuitive neural control in order to achieve a
smooth and energy efficient gait.

Surface electromyographic (EMG) signals are taken from
the skin above relevant muscle groups offer an opportunity
to detect an ongoing motion even before the limb starts to
change its position in space. Therefore, EMG signals enable
the prostheses control to react more quickly compared to
systems activated directly by a limb movement. Intuitive
control however, needs a more intelligent signal processing
as muscle’s electric activity and its derivatives mirror only
a subset of the provided signal information. Here, pattern
matching algorithms help to extract muscle’s state on a
more detailed level. For a lower-limb prosthesis this might
have multiple consequences. Locomotion changes, particu-
larly in situations with a high probability for a change, are
detectable with a low latency allowing for a fluent switch
in the prostheses behavior. Temporal abnormalities to the
regular gait model can be instantly detected allowing for a
more robust and adaptive control. Additionally, fine-grained
gait partitioning into multiple phases enables the prostheses
control to closely monitor whether the amputee is performing
a regular movement, or being in a situation of a potential
danger. In the latter case, the control might initiate some
standard procedures known to the amputee as, e.g., locking of
prosthesis active elements, allowing to stabilize the situation
in a predictable way.

This paper is structured as follows. Section II reviews
related work. In Section III, the gait model used in this
work is introduced. In Section IV of this paper, we present
an approach for classifying surface EMG signals taken
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Fig. 1. Gait phases: 1) initial contact 2) loading response 3) mid stance 4) terminal stance 5) pre-swing 6) initial swing 7) mid swing 8) terminal swing

from lower limb muscles using Support Vector Machines.
This classifier technique is customized to the amputee and
allows us to recognize seven different gait phases with high
accuracy. The corresponding experiments are described in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Early attempts to outline the concept of a microprocessor-
controlled prosthesis can be found in [9]. Here, the control
algorithm divides the gait cycle into phases of equal length
while each phase is characterized by an appropriate damping
level. The phase detection is performed based on kinematic
inputs picked up from both legs.

Hudgins et al. [10] introduced a novel approach to the
control of a multifunctional prosthesis. The approach is based
on classification of EMG patterns taken from upper limb
muscles using artificial neural networks. After a training
phase the system is capable of distinguishing discrete move-
ments. Despite its robustness, rapidly changing movements
are challenging to the system.

Pappas et al. presented a system based on insole-embedded
pressure sensors for gait event detection as heel strike and
toe-off [11]. This concept is often applied in current gait
analysis systems. We use insole-embedded pressure sensors
as a synchronization input during data recordings.

An experimental system capable of predicting four gait
phases by using pattern recognition on EMG signals is
presented by Hargrove [2] and Huang [12].

Besides EMG and pressure sensors, acceleration sensors
and gyroscopes gained popularity for gait analysis in recent
work [13], [14], [15].

III. THE GAIT MODEL

In our work we rely on the fine-granular gait model as
formalized by Allen et al. [16]. A gait cycle is defined as
the time period between two consecutive heel strikes of the
same foot. Furthermore, the gait cycle is subdivided into
eight gait phases that are indicated in Fig. 1. The gait cycle
begins with the initial contact when the foot first touches
the floor. It is followed by the loading response, where the
weight bearing lasts on the same foot and continues until
the opposite foot is lifted for a swing. Since initial contact is
just an event without duration, we combine it with loading
response to a phase initial contact/loading response. The next
phase, mid stance initializes single-limb support, when the

opposite foot is lifted until the weight is above the forefoot.
During terminal stance, the heel rises and the opposite foot
strikes the ground. This phase is followed by the pre-swing,
when initial contact of the opposite extremity begins and the
toe-off ends, preparing the foot to start the swing. The initial
swing starts when the foot lifts off from the ground and lasts
until it is opposite the stance foot. During mid-swing, the
foot continues to swing until it is anterior to the tibia of the
opposite foot. The terminal swing lasts from the end of the
mid-swing until the heel strikes the floor, which concludes
the gait cycle.

IV. SENSOR SYSTEM AND FEATURE EXTRACTION

For EMG data acquisition, we use a National Instruments
NI USB-6009 analog digital converter [17] to continuously
monitor four EMG sensor channels with 13 bit resolution at a
sampling rate of 1000 Hz in combination with pre-amplified
Biovision EMG sensors [18]. As electrodes we use standard
ARBO Ag/AgCl ECG electrodes.

We have placed the four electrode pairs on the following
lower limb muscles: M. rectus femoris, M. vastus medialis,
M. vastus lateralis and M. biceps femoris. Additionally, a
reference electrode was placed on the hip. The electrode
placement scheme is presented in Fig. 4. The exact electrode
positions are determined specifically for the test subject to
obtain pronounced and reproducible signals.
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Fig. 4. EMG sensor placement: 1) M. rectus femoris, 2) M. vastus medialis,
3) M. vastus lateralis, 4) M. biceps femoris

In addition to the EMG sensors, we use two custom-
designed insole-embedded force sensing resistors (FSR) to
analyze pressure underneath the foot. The sensors are situated
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Fig. 2. Division of a gait cycle into gait phases: the beginnings of initial contact/loading response (a), mid stance (b), terminal stance (c) and initial swing
(e) can be deduced from pressure sensor data, while the beginnings of pre-swing (d), mid swing (f) and terminal swing (g) are calculated using offsets.
The boxes represent 100 ms areas used to compute a single feature.
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Fig. 3. EMG signal preprocessing: Raw signals for four channels (a). (b) presents 100 ms area corresponding to a box in Fig. 2, and (c) the RMS
smoothed signals with the extracted features (d).

under the heel and the toes, enabling the detection of heel
strike and toe-off.

Prior to feature extraction, the raw EMG data has to be
partitioned into gait cycles which for their part need to be
subdivided into individual gait phases. For this purpose, we
utilize the pressure sensor data. The schema is illustrated in
Fig. 2. The beginning and end of a gait cycle are determined
by heel strikes (Fig. 2(a) and (h)). The beginnings of mid
stance, terminal stance and initial swing can be defined by
corresponding events of the pressure sensor (Fig. 2(b), (c)
and (e)). To specify the starting points for pre-swing, mid
swing and terminal swing, we rely on gait cycle lengths,
given by [1] (Fig. 2(d), (f) and (g)).

Signal processing and feature extraction is done in the
digital domain. Based on the raw EMG signals djkp, where
j denotes the time index, k the channel (k = 1 . . . 4), and
p the gait phase (p = 1 . . . 7), we extract features in two
steps following the approach presented in [19]. First, the
steady state signal starting one second after the beginning
of a movement is smoothed by a root mean square (RMS)
method with a window size of ws = 10 samples. This is
shown in Fig. 3(c). The first 100 ms (100 samples at 1000

Hz) of the rectified and smoothed signal are thus given by:

d′jkp = [
1

ws

j+ws−1∑
i=j

d2ikp]
1
2 ,

with j = 1 . . . 100. Then, a logarithm-transformed moving
average with window size of wf = 20 samples and shift
amount of sf = 10 samples is computed from d′jkp. A
feature then comprises 10 values and is defined as:

flmkp = −log( 1

wf

lm+wf−1∑
j=lm

d′jkp),

with lm = 1 + (m − 1) · sf , and m = 1 . . . 10. Taking all
four channels into account, the feature vector for a single
movement consists of 40 values which are fed into the
classifier. These 40 values are depicted in Fig. 3(d). The
feature vectors for all 7 gait phases together form one data
set.

V. CLASSIFIERS, EXPERIMENTS, AND RESULTS

In this section we report on the employed pattern matching
algorithms, the experiment setup, and the results.



A. Pattern Matching Algorithms

For EMG signal classification we rely on support vector
machines (SVMs) [20], [21]. The key advantage of SVMs is
the principle of structural risk minimization which typically
yields very good generalization performance compared to
other classifier paradigms. In our experiments we employ
an exhaustive search on SVM’s parameters to identify good
performing values for C and γ. An extensive comparison of
SVMs to other classifiers for EMG signal classification can
be found in [19].

B. Experiments

All experiments are executed by an lower-limb male am-
putee and an male non-amputee subject. Each individual per-
formed three experiments, while repeating each experiment
three times. An experiment is defined by the number of gait
cycles per minute. In the first two experiments, individuals
performed level gait with 40 and 50 cycles per minute.
These values were taken from [1] as realistic gait frequency
values used by lower limb amputees. A metronome indicated
the correct frequencies during the experiments. In the third
experiment the test person could chose any desired gait
frequency, including variable frequencies. Each experiment
repetition was recorded over 60 seconds.

The EMG data was separated into training and test data
as follows: we use the first 10 gait cycles of an experiment
repetition to train the SVMs. Afterwards, the successive gait
cycles within the same experiment repetition are classified
by the SVMs.

C. Results

Tab. I presents the results, partitioned by the performing
individual and the gait frequency. As visualized in Fig. 2, data
of each gait phase is used to extract three feature sets. With
seven gait phases in a single gait cycle, 21 feature sets define
a complete gait cycle. Thus, as 10 gait cycles of each of the
three experiment repetitions were used for training, a single
number in the training accuracy column is averaged over
10 × 3 × 21 feature sets. Similarly, numbers in the training
columns are averaged over multiples of 3× 21 feature sets.

40 cyc./min. 50 cyc./min. var. cyc./min.
trn. tst. trn. tst. trn. tst.

amp. 76.87% 67.23% 79.14% 68.66% 74.23% 64.93%
reg. 85.42% 75.78% 86.34% 75.09% 84.86% 73.46%

TABLE I
RESULTS: TRAINING AND TEST ACCURACY RATES FOR AN AMPUTEE
AND NON-AMPUTEE (REG.) LEVEL GAIT WITH 40, 50 AND VARIABLE

GAIT FREQUENCY, AVERAGED OVER THREE EXPERIMENT RUNS.

The first conclusion we can draw from Tab. I is, that the
non-amputee performs better than the amputee by 7% to 10%
during the training and 7% to 9% during the testing. While
the test accuracies drops roughly 9% to 11% compared to
the training accuracies for both individuals, the non-amputee
seems to have the more constant test rates.

VI. CONCLUSION

In this paper, we have presented a fine-grained gait model
driven by EMG sensors. To verify its performance, we
have created an automatic mechanism, synchronizing and
partitioning the recorded EMG data by the means of insole-
embedded force sensors and a commonly accepted time
model of human level gait. While in controlled laboratory
conditions the gait time model and the FSR sensors can be
used to quantize the irregular gait of an amputee subject, their
generalization to the real-world situations are only possible
under simplifications.

We show that for a non-trained individual the gait phase
within a 1.3 to 1.4 seconds lasting gait cycle comprising
seven gait phases can be specified with a probability of 67%
for an amputee and 75% for an non-amputee, respectively.
We are convinced that, when considering the gait phases
sequence, the classification accuracy in the context of some
previous gait phases can be increased significantly. Apart
from this, our goal is not primarily to detect the regular level
gait but the deviations from it. To this, we are interested
in locomotion changes and, that is superficial for us, in
irregular muscle activities indicating potentially dangerous
situations to the amputee. In future work we will extend the
experiments to investigate the transitions between the regular
level gait, stopping, and some prosthesis slipping situations.
Our goal is to develop a low-latency method for a robust
detection of non-standard lower-limb situations using EMG
signals.
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