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Abstract— The acceptance of hand prostheses strongly de-
pends on their user-friendliness and functionality. Current
prostheses are limited to a few movements and their operation
is all but intuitive. The development of practically applicable
multi-movement prostheses requires the combination of modern
classification methods with novel techniques for manufacturing
high precision sockets.

In this paper, we introduce an approach for classifying
EMG signals taken from forearm muscles using support vector
machines. This classifier technique is used in an adaptive
operation mode and customized to the amputee, which allows
us to recognize eleven different hand movements with high
accuracy. Then, we present a novel manufacturing technique
for prosthesis sockets enabling a precise amputee-specific fitting
and EMG sensor placement.

I. INTRODUCTION

The acceptance of hand prostheses strongly depends on
their user-friendliness and functionality. Prosthesis develop-
ment thus involves finding the right trade-offs between func-
tionality, weight, power consumption and appearance. Most
current prostheses [1],[2] are limited to a few movements and
their operation is all but intuitive. Moreover, such prostheses
are often rather heavy, lack the sufficient holding force for
many tasks and develop too much noise during operation.

Recently, multi-movement prostheses have gained interest.
A prominent example is Touch Bionics’ iLimb, a true 5-
finger hand prosthesis [3] with greatly improved functionality
and cosmetic appeal. However, also the iLimb shows limited
holding force and generates noise. Additionally, all available
prostheses require substantial maintenance effort and are very
expensive.

Increasing the degrees of freedom requires more motors
and drives and makes the mechanical construction more
involved, e.g., absorbing multi-modal vibrations. Technolog-
ical progress, especially novel materials, allows for more
compact and lighter electrical and mechanical components.
At the same time, appropriate prosthesis controllers need to
be developed that can recognize multiple movements and
steer the prosthesis’ drives to realize also more complex
movements in a natural way.

Electromyographic (EMG) signals are widely-used to steer
prostheses. EMG signals are typically taken from the skin, in
rare cases directly from muscles which incurs the general risk
of surgery and a higher maintenance effort. Recent research

programs investigate electrodes that can be injected in the
amputation stump [4]. To measure skin-based EMG signals,
EMG electrodes are placed on a sensor carrier and fixed
within the prosthesis socket. The development of practically
applicable multi-movement prostheses requires the combina-
tion of modern EMG signal processing methods with novel
techniques for manufacturing high precision sockets.

In Section II of this paper, we present an approach
for classifying EMG signals taken from forearm muscles
using support vector machines. This classifier technique is
customized to the amputee and allows us to recognize eleven
different hand movements with high accuracy. We compare
fixed and adaptive operation modes and demonstrate the need
for an adaptive classification. The corresponding experiments
are described in Section III. A novel manufacturing method
for high-precision sockets is outlined in Section IV. Finally,
Section V concludes the paper.

II. EMG SIGNAL CLASSIFICATION

We have developed a feature extraction and classification
scheme for EMG signals and conducted a series of experi-
ments [5]. This section briefly presents the signal processing
scheme.

A. Sensor System and Feature Extraction

For EMG data acquisition, we use a MindMedia Nexus 10
Biofeedback System [6] to continuously monitor four EMG
sensor channels with 24 bit resolution at a sampling rate of
2048 Hz. We have placed the four electrode pairs on the
top, bottom, medial, and lateral sides of the forearm with
the reference at the wrist. The exact electrode positions are
determined specifically for the test subject to obtain pro-
nounced signals. A reproducible biomechanical experiment
setup is an important requirement for such a measurement
system. Thus, after the initial calibration we have marked the
electrode positions to be able to re-establish the experimental
setup on different days.

In a single experiment run, the test subject had to perform
a sequence of eleven different movements. These move-
ments are extension, flexion, ulnar deviation, radial deviation,
pronation, supination, open, close, key grip, pincer grip and
extract the index finger, and are depicted in Figure 1. In
total, 110 experiments have been conducted during different



Fig. 1. Motion classes: 1) extension 2) flexion 3) ulnar deviation 4) radial deviation 5) pronation 6) supination 7) open 8) close 9) key grip 10) pincer
grip and 11) extract index finger.

times of a day, over a period of three weeks. Each movement
starts with a relaxation part of about 4 seconds followed
by a contraction part that lasts about 5 seconds, as shown
in Figure 2(a). The EMG signal for the contraction part
divides into a one second phase at the onset of the contraction
containing the transient components of the EMG signal, and
a four seconds steady state phase which corresponds to a
constant force contraction. The steady phase has been used
for classification.

Signal processing and feature extraction is done com-
pletely in the digital domain. Based on the raw EMG signals
djkp, where j denotes the time index, k the channel (k =
1 . . . 4), and p the movement (p = 1 . . . 11), we extract
features in two steps following the approach presented in [7]:

First, the steady state signal starting one second after the
beginning of a movement is smoothed by a root mean square
(RMS) method with a window size of ws = 21 samples,
shown in Figure 2(c). The first 100 ms (208 samples at 2048
Hz) of the rectified and smoothed signal are thus given by

d′jkp = [ 1
ws

∑j+ws−1
i=j d2

ikp]
1
2

with j = 1 . . . 208.
Second, a logarithm-transformed moving average with

window size of wf = 40 samples (20 ms) and shift amount of
sf = 21 samples (10 ms) is computed from d′jkp. A feature
then comprises 10 values and is defined as

flmkp = −log( 1
wf

∑lm+wf−1
j=lm

d′jkp)

with lm = 1 + (m − 1) · sf , and m = 1 . . . 10. Taking all
four channels into account, the feature vector for a single
movement consists of 40 values which are fed into the
classifier. These 40 values are depicted in Figure 2(d). The
feature vectors for all 11 movements together form one data
set.

B. Classification

For classification we rely on support vector machines
(SVMs) [8] as they are state-of-the-art methods with robust
behavior for a large variety of classification problems. SVMs
basically use a hyperplane to separate two classes. For
problems that can not be linearly separated in the input space,
SVMs find a solution using a nonlinear transformation of the
original input space into a higher-dimensional so-called fea-
ture space, where an optimally separating hyperplane can be

determined. Those hyperplanes are called optimal that have a
maximal margin, where margin means the minimal distance
from the separating hyperplane to the closest data points,
which are denoted as support vectors. The transformation is
usually realized by nonlinear kernel functions, e.g., Gaussian
kernels. nu-SVMs, which we have used in our experiments,
introduce slack variables - being subject to minimization as
well - to allow a certain degree of missclassification. The
key advantage of SVMs is the principle of structural risk
minimization which typically yields very good generalization
performance compared to other classifier paradigms. An
extensive comparison of SVMs to other classifiers for EMG
signal classification can be found in [7].

III. EXPERIMENTAL RESULTS

In this section, we report on experiments we have per-
formed to answer two specific questions: First, what is the
recognition accuracy we can achieve with EMG signal-based
classification in dependency of the number of movements
to recognize? Second, to what extent does the recognition
accuracy drop over time for an initially trained classifier?

To evaluate our EMG signal classification approach, we
have determined the recognition accuracies using leave-one-
out cross-validation on the complete data. That is, we have
used all but one data set to train a classifier and then tested
it on this data set. This process is repeated for all data sets.

As shown in Table I, the resulting accuracy averaged over
all 11 movements is 91.3%. However, in most practical cases
less than 11 movements will be required. Generally, discrimi-
nating between a smaller number of movements should yield
better accuracies. For validation we have gradually reduced
the number of movements by discarding the movement with
the worst recognition accuracy. The resulting accuracies for
11 down to only two movements are summarized in Table I.
A classification accuracy of 100% is reached for four and
less movements. In practice, the prosthesis will dictate the
set of movements to be classified.

In order to analyze the longer-term behavior of EMG
signal classification, we have conducted another series of
experiments where we look at the data sets over time. To
this end, we have extracted feature vectors from the EMG
signal’s steady state every 10 ms, classified them, and taken
a majority vote over 15 consecutive classifications. In this
way we receive one final classification every 150 ms and
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Fig. 2. EMG signal preprocessing. Raw signal for all four channels (a) consisting of a four seconds relaxation phase, a one second transient phase with
intensified activity, and a four 4 seconds steady state contraction phase. (b) presents 100 ms of the steady state phase, and (c) the RMS smoothed signals
from which the features are extracted (d).

suppress sporadic, short-period missclassifications. Figure 3
compares the classification accuracies of five classifiers. Four
of them use a fixed model where the classifiers have been
trained once with the first 5, 10, 20 and 30 data sets.

Our experiments reveal that while using more training
data results in an improved recognition accuracy, about 30
data sets are sufficient to create a fixed model classifier
with maximal accuracy. As Figure 3 also clearly shows,
the recognition accuracies for the fixed model classifiers
degrade over time. The accuracies follow roughly three
distinct phases. In the first phase which took four days (20
data sets), the accuracies dropped by some 10%. The second
phase of about six days (30 data sets) shows rather stable
accuracies. In the third phase, which is more than 10 days
after training the classifiers, the accuracies start to drop again.
Generally, the accuracies vary over time and show outliers
also due to the actual concentration of the test subject and
effects of familiarization with the data acquisition procedure.

In comparison to the fixed model classifiers, Figure 3
shows the accuracy achieved for an adaptive model classifier
that is continuously re-trained with up to 30 preceding
data sets. The adaptive model leads to significantly better
results, demonstrating that re-training the classifier is key to
successfully discriminating between multiple movements.

IV. HIGH-PRECISION PROSTHESES SOCKETS

To enable multi-movement prosthesis control based on
EMG signals, a high-precision socket is required including
a sensor carrier that places the sensor electrodes exactly at
their optimal positions. Apparently, such as socket must be

number of movements 11 10 9 8
accuracy [%] 91.3 94.5 96.1 97.5

number of movements 7 6 5 4-2
accuracy [%] 98.1 98.6 99.7 100.0

TABLE I
GRADUALLY DISCARDING MOVEMENTS WITH THE WORST

RECOGNITION ACCURACY IMPROVES THE OVER-ALL RECOGNITION

RATE. DISCARDED MOVEMENTS (FROM 11 TO 4): RADIAL DEVIATION,
PINCER GRIP, OPEN, SUPINATION, PRONATION, KEY GRIP, INDEX FINGER.
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Fig. 3. Recognition accuracies for fixed and adaptive model classifiers.

highly amputee-specific. We present a novel technique for
manufacturing such a sensor carrier and a high-precision
socket rather quickly and at a reasonable cost.

In an initial session, a technician and a physiotherapist
work with the amputee and conduct a palpation of the
musculature, determine the elbow function - if applicable
- and rate the activities of the different muscles by assigning
scores. The subsequent socket and sensor carrier manufac-
turing technique comprises following steps:

1) The optimal sensor positions are determined through
a series of EMG signal measurements and movement
classifications using the techniques described in Sec-
tion II. The sensor positions are marked on the am-
putation stump. An example for an amputation stump
with EMG sensor electrodes is shown in Figure 4.

2) The arm with the amputation stump is scanned and a
three-dimensional volume model is generated. Figure
5 shows such a model, augmented with a model of
a prosthesis part. A two-dimensional projection of
the 3D model, i.e., the surface, is then printed on a
transparent and highly-flexible carrier foil. The foil is
properly cut, curved in and fixed to form a socket
dummy.



Fig. 4. Optimal sensor positions are determined through EMG signal
measurements.

Fig. 5. 3D model of the stump.

3) The socket dummy is placed on the amputation stump
and the areas required for the muscular movements are
marked, considering the elbow mobility. An example
is shown in Figure 6.

4) The marked socket dummy is placed on a slightly
compressed plaster copy of the amputation stump, and
the muscular activity areas are transferred from the
dummy to the plaster copy. To allow for a certain extent
of free space for muscle movements in the final socket,
the muscular activity areas are modulated with plaster
according to the characteristics of the specific muscles.

5) A PU silicon sensor carrier with a thickness of approx-
imately 2.5 mm is manufactured from the modulated
plaster copy of the stump. Completed with EMG
sensors, the sensor carrier is tested on the amputee
through another series of EMG signal classifications.
To ensure an optimal and permanent location of the
carrier on the stump, a vacuum valve is incorporated
into the silicon. Together with the carbon socket, this
produces slight negative pressure and holds the sensor
carrier locked.

6) The final socket is manufactured through a carbon
deep-drawing process based on the modulated stump
copy and the sensor carrier.

V. CONCLUSION

In this paper, we have presented an EMG signal feature
extraction and classification approach and demonstrated ex-
perimentally that we are able to recognize up to 11 hand
movements with acceptably high accuracy. Equally impor-
tant, we have seen that an adaptive classification technique is
required to sustain the high recognition accuracies over time.
We have further outlined a novel manufacturing technique for
high-precision sockets and the corresponding sensor carriers.
Future work includes the optimization of the feature extrac-
tion and classification scheme as well as the manufacturing
technique, and extensive tests in orthopedic use.

We are convinced that the combination of both the EMG
signal classification scheme and the high-precision sockets
will enable a new breed of hand prostheses. Consequently,
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Fig. 6. Determining muscular movement areas, affected by elbow mobility.
Lateral (a) and medial (b) view.

we are additionally working on improved motors, drives
and mechanical constructions with the goal to minimize a
prosthesis’ weight and noise and improve its holding force
up to 25 kg. Augmented with a control based on the presented
EMG signal classification technique and the highly precise
sockets, these developments will result in prostheses with
improved wearing comfort and versatile grasping functions,
at a reasonable price.
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